## \#870136

A body of mass 2 kg slides down with an acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$ on a rough inclined plane having a slope of $30^{\circ}$. The external force required to take the same body up the plane with the same acceleration will be: $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

A $\quad 4 N$

B $\quad 14 N$

C $\quad 6 \mathrm{~N}$

D $\quad 20 \mathrm{~N}$

## Solution

Equation of motion when the mass slides down
$M g \sin \Theta-f=M a$
$10-f=6$
$f=4 N$

Equation of motion when the block is pushed up
Let the external force be $F$
$F-M g \sin \Theta-f=M a$
$F-10-4=6$
$F=20 N$

## \#870141

A plane polarized monochromatic EM wave is travelling a vacuum along $z$ direction such that at $t=t_{1}$ it is found that the electric field is zero at a spatial point $z_{1}$. The next zero that occurs in its neighbouhood is at $z_{2}$. The frequency of the electromagnetic wave is:

A $\frac{3 \times 10^{8}}{\left|z_{2}-z_{1}\right|}$
B $\frac{6 \times 10^{8}}{\left|z_{2}-z_{1}\right|}$
C $\frac{1.5 \times 10^{8}}{\left|z_{2}-z_{1}\right|}$
D

$$
\frac{1}{t_{1}+\frac{\left|z_{2}-z_{1}\right|}{3 \times 10^{8}}}
$$

## Solution

$\in=\epsilon_{o}-e^{i(k z-w t)}$
at $t=t_{1}, z=z_{1}, E=o$,
the next zero that occurs in it's neighborhood is at $z_{2}$, the frequency of the electromagnetic wave at $t_{2}$
$e^{i\left(k z_{1}-w t_{1}\right)}=e^{i\left(k z_{2}-w t_{2}\right)}$
$k z_{1}-w t_{1}=k z_{2}-w t_{2}$
$\left(t_{2}-t_{1}\right) w=k\left(z-z_{1}\right)$
where $k=\frac{2 \pi}{\lambda}=2 \pi v$
$\left(t_{2}-t_{1}\right)=\frac{2 \pi}{\lambda \times 2 \pi v}\left(z_{2}-z_{1}\right)$
$\left(t_{2}-t_{1}\right)=\frac{1}{x \times v}\left(z_{2}-z_{1}\right)$
$\lambda \times v=\frac{\left(z_{2}-z_{1}\right.}{\left(t_{1}-t_{1}\right.}$
$C=\frac{\left(z_{2}-z_{1}\right)}{\left(t_{2}-t_{1}\right)}$
$\left(t_{2}-t_{1}\right)=\frac{\left(z_{2}-z_{1}\right)}{C}$
Frequency is $f \propto \frac{1}{t}$ then
$\frac{1}{\left(t_{2}-t_{1}\right)}=\frac{C}{\left(z_{2}-z_{1}\right)}$
frequency $=\frac{3 \times 10^{8}}{\left.z_{2}-z_{1}\right)}$
\#870145
A current of $1 A$ is flowing on the sides of an equilateral triangle of side $4.5 \times 10^{-2} \mathrm{~m}$. The magnetic field at the centre of the triangle will be:

A $\quad 4 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$
B Zero

C $\quad 2 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$
D $8 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$

## Solution

$l=4.5 \times 10^{-2} \mathrm{~m}$
$\tan 60^{\circ}=\sqrt{3}=\frac{l}{2 d}$
$\Rightarrow d=\frac{l}{2 \sqrt{3}}=\left(\frac{4.5 \times 10^{-2}}{2 \sqrt{3}}\right) m$
$B=\frac{\mu_{o} i}{4 \pi d}\left(\cos \theta_{1}+\cos \theta_{2}\right)$
$=\frac{2 \mu_{0} i}{4 \pi d}\left(\frac{\sqrt{3}}{2}\right)$
$=\frac{\mu_{o} i}{2 \pi}\left(\frac{\sqrt{3}}{2}\right) \frac{2 \sqrt{3}}{\left(4.5 \times 10^{-2}\right)}$
On solving we will get option A as answer


## \#870163



| $x$ | $y$ | $z$ |
| :--- | :--- | :--- |
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

B

| $x$ | $y$ | $z$ |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |


| $x$ | $y$ | $z$ |
| :--- | :--- | :--- |
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

D

| $x$ | $y$ | $z$ |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

## Solution

| $x$ | $y$ | $\bar{x}$ | $a=x . y$ | $b=\bar{x} \cdot y$ | $z=\overline{a . b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 |

## \#870165

A constant voltage is applied between two ends of a metallic wire. If the length is halved and the radius of the wire is doubled, the rate of heat developed in the wire will be:

## Increased 8 times

B Doubled

C Halved

D Unchanged

## Solution

Rate of heat developed in the wire=
$P=\frac{V^{2}}{R}$
$R_{1}=\frac{\rho L}{A}=\frac{\rho L}{\pi r^{2}}$
$P_{1}=\frac{V^{2}}{R_{1}}$
$R_{2}=\frac{\rho \frac{L}{2}}{\pi(2 r)^{2}}=\frac{\rho L}{\pi 8 r^{2}}=\frac{R_{1}}{8}$
$P_{2}=\frac{V}{R_{1}}=\frac{8 V}{R_{1}}$
$P_{2}=8 P_{1}$

## \#870168

The characteristic distance at which quantum gravitational effects are significant, the Planck length, can be determined from a suitable combination of the fundamental physical constants $G, h$ and $c$. Which of the following correctly gives the Planck length?

A $G^{2} h c$

B
$\left(\frac{G h}{c^{3}}\right)^{\frac{1}{2}}$
C $\quad G^{\frac{1}{2}} h^{2} c$
D $\quad G h^{2} c^{3}$
\#870170


As shown in the figure, forces of $10^{5} \mathrm{~N}$ each are applied in opposite directions, on the upper and lower faces of a cube of side 10 cm , shifting the upper face parallel to itself by 0.5 cm . If the side of another cube of the same material is 20 cm , then under similar conditions as above, the displacement will be:

A $\quad 1.00 \mathrm{~cm}$
B 0.25 cm

C $\quad 0.37 \mathrm{~cm}$

D 0.75 cm

## Solution

For same material the ration of stress to strain is same
For first cube
Stress $_{1}=\frac{10^{5}}{\left(0.1^{2}\right)}$
strain $_{1}=\frac{0.5 \times 10^{-2}}{0.1}$
For second block,
stress $_{2}=\frac{10^{5}}{(0.2)^{2}}$
strain $_{2}=\frac{x}{0.2}$
where x is the displacement for second block.
For same material,
$\frac{\text { stress }_{1}}{\text { strain }_{1}}=\frac{\text { stress }_{2}}{\text { strain }_{2}}$
From this $x=0.25 \mathrm{~cm}$

## \#870173

The carrier frequency of a transmitter is provided by a tank circuit of a coil of inductance $49 \mu \mathrm{H}$ and a capactiance of 2.5 nF . It is modulated by an audio signal of 12 kHz . The frequency range occupied by the side bands is:

A $18 \mathrm{kHz}-30 \mathrm{kHz}$
B $63 \mathrm{kHz}-75 \mathrm{kHz}$
C $442 \mathrm{kHz}-466 \mathrm{kHz}$
D $13482 \mathrm{kHz}-13494 \mathrm{kHz}$

## Solution

$w=\frac{1}{\sqrt{L C}}$
$=\frac{1}{\sqrt{49 \times 10^{-6} \times \frac{2.5}{10} \times 10^{-9}}}$
$=\frac{1}{7 \times 5 \times 10^{-8}}=\frac{10^{8}}{7 \times 5}=w$
$=\frac{10^{8}}{7 \times 5}=2 \pi \times f=2 \times \frac{22}{7} \times f$
$\frac{10^{8}}{22 \times 10}=f$
$\frac{10^{7}}{22}=f$
$\frac{10^{4}}{22} \mathrm{kHz}=f$
$f=454.54 \mathrm{kHz}$
for frequency range
$454.54 \pm 12 \mathrm{kHz}$
$442 \mathrm{kHz}-466 \mathrm{kHz}$

## \#870177



A copper rod of mass $m$ slides under gravity on two smooth parallel rails, with separation 1 and set at an angle of $\theta$ with the horizontal. At the bottom, rails are joined by a resistance $R$.There is a uniform magnetic field $B$ normal to the plane of the rails, as shown in the figure. The terminal speed of the copper rod is:

A $\frac{m g R \cos \theta}{B^{2} l^{2}}$
B $\frac{m g R \sin \theta}{B^{2} l^{2}}$
C $\frac{m g R \tan \theta}{B^{2} l^{2}}$
D $\frac{m g R \cot \theta}{B^{2} l^{2}}$
Solution
$\epsilon=\frac{d \phi}{d t}=\frac{d(B A)}{l t}$
$=\frac{d(B l)}{d t}$
$=\frac{B d l}{d t}=B V l$
$F=i l B=\left(\frac{B V}{R}\right)\left(l^{2} B\right)=\frac{B^{2} l^{2} V}{R}$
At equilibrium
$\Rightarrow m g \sin \theta=\frac{B^{2} l V}{R}$
$\Rightarrow V=\frac{m g R \sin \theta}{B^{2} l^{2}}$


## \#870178



A think rod $M N$, free to rotate in the vertical plane about the fixed end $N$, is held horizontal. When the end $M$ is released the speed of this end, when the rod makes an angle $\alpha$ with the horizontal, will be proportional to: (see figure)

A $\sqrt{\cos \alpha}$
B $\quad \cos \alpha$
C $\quad \sin \alpha$

D $\sqrt{\sin \alpha}$

## Solution

When the rod makes an angle of
$\alpha$ displacement of centre of mass
$=\frac{l}{2} \cos \alpha$
$m g \frac{l}{2} \cos \alpha=\frac{1}{2} I \omega^{2}$
$m g \frac{l}{2} \cos \alpha=\frac{m l^{2}}{6} \omega^{2}$
$\omega=\sqrt{\frac{3 g \cos \alpha}{l}}$
speed of end $=\omega \times l=\sqrt{3 g \cos \alpha l}$
hence $\omega$ is proportional to $\sqrt{\cos \alpha}$

## \#870179

A parallel plate capacitor with area $200 \mathrm{~cm}^{2}$ and separation between the plates 1.5 cm , is connected across a battery of emf $V$. If the force of attraction between the plates is $25 \times 10^{-6} \mathrm{~N}$, the value of $V$ is approximately:
$\left(\epsilon_{0}=8.85 \times 10^{--12} \frac{C^{2}}{N . m^{2}}\right)$
A $\quad 150 \mathrm{~V}$
B $\quad 100 \mathrm{~V}$
C 250 V
D 300 V

## Solution

$A=200 \mathrm{~cm}^{2}$
$d=1.5 \mathrm{~cm}$
$F=25 \times 10^{-6} N$
$\because E=\frac{\sigma}{2 \epsilon_{o}}=\frac{Q}{2 A \epsilon_{o}}$
$F=Q E$
$F=\frac{Q^{2}}{2 A \epsilon_{o}}$
But $Q=C V=\frac{\in_{o} A(V)}{d}$
$\therefore F=\frac{\left(\epsilon_{o} A V\right)^{2}}{d^{2} \times 2 A \epsilon_{o}}$
$=\frac{\left(\epsilon_{o} A\right)^{2} \times V^{2}}{d^{2} \times 2 \times\left(A \epsilon_{o}\right)}$
$=\frac{\left(\epsilon_{o} A\right) V^{2}}{d^{2} \times 2}$
$25 \times 10^{-6}=\frac{\left(8.85 \times 10^{-12}\right) \times\left(200 \times 10^{-4}\right) \times V^{2}}{2.25 \times 10^{-4} \times 2}$
$V=\sqrt{\frac{25 \times 10^{-6} \times 2.25 \times 10^{-4} \times 2}{8.85 \times 10^{-12} \times 200 \times 10^{-4}}}$

Here, on solving, $v \approx 250 \mathrm{~V}$


## \#870181

A solid ball of radius $R$ has a charge density $\rho$ given by $\rho=\rho_{0}\left(1-\frac{r}{R}\right)$ for $0 \leq r \leq R$. The electric field outside the ball is:
A $\frac{\rho_{0} R^{3}}{\epsilon_{0} r^{2}}$
B $\frac{4 \rho_{0} R^{3}}{3 \epsilon_{0} r^{2}}$
C $\frac{3 \rho_{0} R^{3}}{4 \epsilon_{0} r^{2}}$
D $\frac{\rho_{0} R^{3}}{12 \epsilon_{0} r^{2}}$

## Solution

$\rho=\rho_{0}\left(1-\frac{r}{R}\right)$
$d q=\rho d v$
$q_{i n}=\int d q$
$=\rho d v$
$\rho_{0}\left(1-\frac{r}{R}\right) 4 \pi r^{2} d r$
$\because d v=4 \pi r^{2} d r$
$=4 \pi \rho_{0} \int_{0}^{R}\left(1-\frac{r}{R}\right) r^{2} d r$
$=4 \pi \rho_{o} \int_{o}^{R} r^{2} d r-\frac{r^{2}}{R} d r$
$=4 \pi \rho_{o}\left[\left[\frac{r^{3}}{3}\right]_{o}^{R}-\left[\frac{r^{4}}{4 R}\right]_{o}^{R}\right]$
$=4 \pi \rho_{o}\left[\frac{R^{3}}{3}-\frac{R^{4}}{4 R}\right]$
$=4 \pi \rho_{o}\left[\frac{R^{3}}{3}-\frac{R^{3}}{4}\right]$
$=4 \pi \rho_{o}\left[\frac{R^{3}}{12}\right]$
$q=\frac{\pi \rho_{o} R^{3}}{3}$
$E .4 \pi r^{2}=\left(\frac{\pi \rho_{o} R^{3}}{3 \epsilon_{o}}\right)$
$\Rightarrow E=\frac{\rho_{o} R^{3}}{12 \epsilon_{o} r^{2}}$

## \#870184

A proton of mass $m$ collides elastically with a particle of unknown mass at rest. After the collision, the proton and the unknown particle are seen moving at an angle of $90^{\circ}$ with respect to each other. The mass of unknown particle is:

A $\frac{m}{\sqrt{3}}$
B $\frac{m}{2}$
C $\quad 2 m$
D $m$

## Solution

Apply principle of conservation of momentum along x-direction,
$m u=m v_{1} \cos 45+M v_{2} \cos 45$
$m u=\frac{1}{\sqrt{2}}\left(m v_{1}+M v_{2}\right) \quad \ldots$ (1)
along $y$-direction,
$o=m v_{1} \sin 45-M v_{2} \sin 45$
$o=\left(m v_{1}-M v_{2}\right) \frac{1}{\sqrt{2}}$
Coefficient of $e=1=\frac{v_{2}-v_{1} \cos 90}{u \cos 45}$
Restution
$\Rightarrow \frac{v_{2}}{\frac{u}{\sqrt{2}}}=1$
$\Rightarrow u=\sqrt{2} v_{2}$
solving eqn (1), (2), \& (3) we get
$M=m$


A $\quad 0.5$
B $\quad 0.7$
C $\quad 0.3$
D 0.6

## Solution

$3.5 \mathrm{rev} /$ second
$1 \mathrm{rev} \rightarrow 2 \pi \mathrm{rad}$
$3.5 \mathrm{rev} \rightarrow 2 \pi \times 3.5 \mathrm{rad}$
$\Rightarrow \omega=7 \pi \mathrm{rad} / \mathrm{sec}$
$\mu m g=\frac{m v^{2}}{1.25}$
$\mu m g=\frac{m(r w)^{2}}{r}$
$\mu m g=m r w^{2}$
$\mu=\frac{r w^{2}}{g}=\frac{1.25 \times 10^{-2} \times\left(7 \times \frac{22}{7}\right)^{2}}{10}$

$$
=\frac{1.25 \times 10^{-2} \times 22^{2}}{10}
$$

$$
=0.6
$$



## \#870190

At the centre of a fixed large circular coil of radius $R$, a much smaller circular coil of radius $r$ is placed. The two coils are concentric and are in the same plane. The larger coil carries a current $I$. The smaller coil is set to rotate with a constant angular velocity $\omega$ about an axis along their common diameter. Calculate the emf induced in the smaller coil after a time $t$ of its start of rotation.

A $\frac{\mu_{0} I}{2 R} \omega r^{2} \sin \omega t$
B $\frac{\mu_{0} I}{4 R} \omega \pi r^{2} \sin \omega t$
C $\frac{\mu_{0} I}{2 R} \omega \pi r^{2} \sin \omega t$
D $\frac{\mu_{0} I}{4 R} \omega r^{2} \sin \omega t$

## Solution

$\phi=\bar{B} \cdot \bar{A}=B A \cos w t=\pi r^{2} b \cos w t$
$\epsilon=-\frac{d \phi}{d t}$
$=-\frac{d}{d t}\left(\pi r^{2} B \cos w t\right)$
$=\pi r^{2} B \sin w t(w)$
$=\frac{\mu_{o} I}{2 R} \pi w r^{2} \sin w t\left(\therefore B=\frac{\mu_{o} I}{2 R}\right)$
\#870227


A capacitor $C_{1}=10 \mu F$ is charged up to a voltage $V=60 \mathrm{~V}$ by connecting it to battery $B$ through switch (1), Now $C_{1}$ is disconnected from battery and connected to a circuit consisting of two uncharged capacitors $C_{2}=3.0 \mu F$ and $P C_{3}=6.0 \mu F$ through a switch (2) as shown in the figure. The sum of final charges on $C_{2}$ and $C_{3}$ is:

A $36 \mu C$
B $20 \mu C$
C $54 \mu C$

D $\quad 40 \mu C$

## \#870231

5 beats/ second are heard when a turning fork is sounded with a sonometer wire under tension, when the length of the sonometer wire is either 0.95 m or 1 m . The frequency of the fork will be:

A 195 Hz

B 251 Hz

C 150 Hz

D 300 Hz
Solution
$L_{1}=0.95 \mathrm{~m}, L_{2}=1 \mathrm{~m}$
$L_{2}>L_{1}, n_{1}>N>n_{2}$
$n_{1}-N=5 \operatorname{and} N-n_{2}=5$
on solving $n_{1}-n_{2}=10$
$n_{2}=n_{1}-10$
By law of length of vibrating string
$n_{1} L_{1}=n_{2} L_{2}$
On solving we get $n_{1}=200 \mathrm{~Hz}$
$n_{1}-N=5$
$\mathrm{N}=195 \mathrm{~Hz}$

## \#870235

Two simple harmonic motions, as shown, are at right angles. They are combined to form Lissajous figures.
$x(t)=A \sin (a t+\delta)$
$y(t)=B \sin (b t)$
Identify the correct match below

A Parameters: $A=B, a=2 b ; \delta=\frac{\pi}{2}$; Curve: Circle
B Parameters: $A=B, a=b ; \delta=\frac{\pi}{2}$; Curve: Line
C Parameters: $A \neq B, a=b ; \delta=\frac{\pi}{2}$; Curve: Ellipse
D Parameters: $A \neq B, a=b ; \delta=0$; Curve: Parabola

## Solution

$x=A \sin (a t+\delta)$
$y=B \sin (b t+r)$
If $A \neq B \& a=b$ we obtain ellipse
\#870239


Speed of the car in the field is half to that on the highway. What should be the distance $R M$, so that the time taken to reach $P$ is minimum?

A $\frac{d}{\sqrt{3}}$

| B | $d$ |
| :--- | :--- |
| 2 |  |

C $\frac{d}{\sqrt{2}}$
D $d$

## Solution

Let the car turn of the highway at a distance ' $x$ ' from the point
M. So,
$R M=x$
And if speed of car in field is $v$, then time taken by the car to cover the distance $Q R=Q M-x$ on the highway, $t_{1}=\frac{Q M-x}{2 v}$
the time taken to travel the distance ' $R P^{\prime}$ ' in the field
$t_{2}=\frac{\sqrt{d^{2}+x^{2}}}{v} \quad \ldots$ (2)
So, the total time elapsed to move the car from $Q$ to $P$
$t=t_{1}+t_{2}=\frac{Q M-x}{2 v}+\frac{\sqrt{d^{2}+x^{2}}}{v}$
for ' $t$ ' to be minimum
$\frac{d t}{d x}=0$
$\frac{1}{v}\left[-\frac{1}{2}+\frac{x}{\sqrt{d^{2}+x^{2}}}\right]=0$
or $x=\frac{d}{\sqrt{2^{2}-1}}=\frac{d}{\sqrt{3}}$


## \#870251

A $\frac{2 \rho d A}{I T}$
B $\frac{2 \rho d A}{I}$
C $\frac{\rho d A}{I}$
D $\frac{\rho d A}{I T}$

## Solution

$$
\begin{aligned}
\rho & =\frac{q}{v o l} \\
& =\frac{q}{A d} \\
q & =\rho A d \\
q & =i t \\
t & =\frac{q}{I} \\
& =\frac{\rho A d}{I}
\end{aligned}
$$

## \#870260

Two Carnot engines $A$ and $B$ are operated in series. Engine $A$ receives heat from a reservoir at 600 K and rejects heat to a reservoir heat to reservoir at temperature $T$. Engine $B$ receives heat rejected by engine $A$ and in turn rejects it to a reservoir at $100 K$. If the efficiencies of the two engines $A$ and $B$ are represented by $\eta_{A}$ and $\eta_{B}$ respectively, then what is the value of $\frac{\eta_{A}}{\eta_{B}}$

A $\frac{12}{7}$
B $\frac{12}{5}$
C $\quad \frac{5}{12}$
D $\frac{7}{12}$

## \#870261

A convergent doublet of separated lenses, corrected for spherical aberration, has resultant focal length of 10 cm . The separation between the two lenses is 2 cm . The focal lengths of the component lenses

A $18 \mathrm{~cm}, 20 \mathrm{~cm}$
B $10 \mathrm{~cm}, 12 \mathrm{~cm}$
C $12 \mathrm{~cm}, 14 \mathrm{~cm}$
D $16 \mathrm{~cm}, 18 \mathrm{~cm}$

## \#870265



## Pass axis

A plane polarized light is incident on a polariser with its pass axis making angle $\theta$ with $x$-axis, as shown in the figure. At four different values of $\theta, \theta=8^{\circ}, 38^{\circ}, 188^{\circ}$ and $218^{\circ}$, the observed intensities are same. What is the angle between the direction of polarization and x -axis

C $\quad 98^{\circ}$

D $128^{\circ}$

## \#870266

An unstable heavy nucleus at rest breaks into two nuclei which move away with velocities in the ratio of $8: 27$. The ratio of the radii of the nuclei (assumed to be spherical ) is:

A $8: 27$

B $2: 3$
C $3: 2$
D $4: 9$
Solution
$\frac{V_{1}}{V_{2}}=\frac{8}{27}$
$m_{1} V_{1}=m_{2} V_{2}$
$\frac{m_{1}}{m_{2}}=\frac{V_{2}}{V_{1}}=\frac{27}{8}$
$\frac{\rho \times \frac{4}{3} \pi R_{1}^{3}}{\rho \times \frac{4}{3} \pi R_{2}^{3}}$
$\left(\frac{R_{1}}{R_{2}}\right)=\left(\frac{27}{8}\right)^{\frac{1}{3}}$
$=\left(\frac{3}{2}\right)^{3 \times \frac{1}{3}}$
$\frac{R_{1}}{R_{2}}=\frac{3}{2}$

## \#870269

A body takes 10 minutes to cool from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. The temperature of surroundings is constant at $25^{\circ} \mathrm{C}$. Then, the temperature of the body after next 10 minutes will be approximately

A $43^{\circ} \mathrm{C}$
B $\quad 47^{\circ} \mathrm{C}$
C $\quad 41^{\circ} \mathrm{C}$
D $\quad 45^{\circ} \mathrm{C}$

## \#870272



A thin uniform bar of length $L$ and mass $8 m$ lies on a smooth horizontal table. Two point masses $m$ and $2 m$ moving in the same horizontal plane from opposite sides of the bar with speeds $2 v$ and $v$ respectively. The masses stick to the bar after collision at a distance $\frac{L}{3}$ and $\frac{L}{6}$ respectively from the centre of the bar. If the bar starts rotating about its center of mass as a result of collision, the angular speed of the bar will be:

A $\frac{v}{6 L}$
B $\frac{6 v}{5 L}$
C $\frac{3 v}{5 L}$
D $\frac{v}{5 L}$

## \#870276

If the de Broglie wavelengths associated with a proton and an $\alpha$ - particle are equal, then the ratio of velocities of the proton and the $\alpha$ - particle will be:

A $1: 4$

B $\quad 1: 2$

C $4: 1$

D $\quad 2: 1$
Solution
Given de Broglie Wavelength
$\lambda_{p}=\lambda_{\alpha}$
So, $\frac{h}{m_{p} \times v_{p}}=\frac{h}{m_{\alpha} \times v_{\alpha}}$
$\frac{v_{p}}{v_{\alpha}}=\frac{m_{\alpha}}{m_{p}}=\frac{4 m_{p}}{m_{p}}$
Because Mass of $\alpha$ particle is 4 times mass of proton
So 4:1
Option C is correct answer

## \#870282

When an air bubble of radius $r$ rises from the bottom to the surface of a lake, its radius becomes $\frac{5 r}{4}$. Taking the atmospheric pressure to be equal to $10 m$ height of water column, the depth of the lake would approximately be (ignore the surface tension and the effect of temperature):

A $10.5 m$

B $8.7 m$

C $\quad 11.2 m$

D $9.5 m$

## Solution

Pressure at bottom
$\left(P_{1}\right)=P_{a t m}+\rho g h+\frac{4 T}{R_{1}}$ $\qquad$ (1)

Pressure at top
$\left(P_{2}\right)=P_{a t m}+\frac{4 T}{R_{2}}$ $\qquad$
Given $R_{1}=r$
$R_{2}=\frac{5 r}{4}$
So $P_{1} V_{1}=P_{2} V_{2}$
$\left(P_{1}\right) \frac{4}{3} \pi r^{3}=\left(P_{2}\right) \frac{4}{3} \frac{125 r^{3}}{64}$
Dividing (1) and (2)
$\frac{P_{1}}{P_{2}}=\frac{P_{a t m}+\rho g h+\frac{4 T}{r}}{P_{\text {atm }}+\frac{4 T \times 4}{5 r}}=\frac{125}{64}$
$\frac{\rho g(10)+\rho g h}{\rho g(10)}=\frac{125}{64}$
$640+64 h=1250$
On solving we get $\mathrm{h}=9.5 \mathrm{~m}$

## \#870298

Muon $\left(\mu^{-1}\right)$ is negatively charged $(|q|=|e|)$ with a mass $m_{\mu}=200 m_{e}$, where $m_{e}$ is the mass of the electron and $e$ is the electronic charge. If $\mu^{-1}$ is bound to a proton to form a hydrogen like atom, identify the correct statements
(A) Radius of the muonic orbit is 200 times smaller than that of the electron
(B) the speed of the $\mu^{-1}$ in the $n$th orbit is $\frac{1}{200}$ times that of the electron in the $n$th orbit
(C) The ionization energy of muonic atom is 200 times more than that of an hydrogen atom
(D) The momentum of the muon in the nth orbit is 200 times more than that of the electron

A (A), (B), (D)
B (B), (D)
C (C), (D)
D (A), (C), (D)

## Solution

(A) Radius of muon
$=\frac{\text { Radius of hydrogen }}{200}$

$$
\text { Radius of } \mathrm{H} \text { atom }=r=\frac{\in_{o} n^{2} h^{2}}{\pi m e^{2}}
$$

$$
\text { Radius of muon }=r_{\mu}=\frac{\in_{o} n^{2} h^{2}}{\pi \times 200 m e^{2}}
$$

$$
r_{\mu}=\frac{r}{200}
$$

(B) Velocity relation given is wrong
(C) lonization energy in $e^{-} \mathrm{H}$ atom
$E=\frac{+m e^{4}}{8 \in-o^{2} n^{2} h^{2}}$
$E_{\mu}=\frac{200 m e^{4}}{8 \in_{o}^{2} n^{2} h^{2}}=200 E$
(D) Momentum of H -atom
$m v r=\frac{n h}{2 \pi}$
momentum of muon is $200 \times m v r$
hence (A), (C) \& (D) are correct

## \#870300

The value closest to the thermal velocity of a Helium atom at room temperature $(300 \mathrm{~K})$ in $\mathrm{ms}^{-1}$ is:
$\left[k_{B}=1.4 \times 10^{-23} \mathrm{~J} / K ; m_{H e}=7 \times 10^{-27} \mathrm{~kg}\right]$
A $\quad 1.3 \times 10^{4}$
B $\quad 1.3 \times 10^{5}$
C $\quad 1.3 \times 10^{2}$

## \#870099


(B)

(C)

(D)


The increasing order of diazotisation of the following compounds is?

A (d) $<$ (c) $<$ (b) $<$ (a)

B (a) $<$ (d) $<$ (b) $<$ (c)
C $\quad$ (a) $<$ (b) $<$ (c) $<$ (d)
D $\quad$ (a) $<$ (d) $<$ (c) $<$ (b)

## Solution

Aromatic diazonium salts are more stable than aliphatic diazonium salts. The stability of aryl diazonium salts is due to resonance. Electron donating substituents increase electron density on benzene ring. They increase the stability of diazonium salts. Electron withdrawing substituents decrease electron density on benzene ring. They decrease the stability of diazonium salts. $-\mathrm{COCH}_{3}$ group is electron withdrawing and hence, (d) is less stable than (b). Although $-\mathrm{O}-\mathrm{COCH}_{3}$ is
electron donating substituent, but it is present in meta position. Hence, it will not have significant effect on stability. The increasing order of diazotisation is $(a)<(d)<(b)<(c)$.

## \#870101



The total number of optically active compounds formed in the following reaction is?

A Zero

B Six

C Four

D Two

## Solution

The total number of optically active compounds formed is four. The product has two chiral $C$ atoms (marked with asterik). Thus, it has $2^{n}=2^{2}=4$ stereoisomers.



## \#870104

In $\mathrm{KO}_{2}$, the nature of oxygen species and the oxidation state of oxygen atom are, respectively

C Peroxide and $-1 / 2$
D Oxide and - 2

## Solution

In $\mathrm{KO}_{2}$, the nature of oxygen species and the oxidation state of oxygen atom are,superoxide and $-1 / 2$ respectively.
Superoxide ion is $O_{2}^{-}$.
Let X be oxidation state of oxygen. The oxidation state of K is +1 .
$+1+2(X)=0$
$2 X=-1$
$X=-\frac{1}{2}$

## \#870110

$\Delta_{f} G^{o}$ at 500 K for substance 'S' in liquid state and gaseous state are $+100.7 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$ and $+103 \mathrm{kcal} m o l^{-1}$, respectively. Vapour pressure of liquid 'S' at 500 K is approximately equal to: $\left(R=2\right.$ cal $\left.K^{-1} \mathrm{~mol}^{-1}\right)$.

A $\quad 100$ atm

B 1 atm

C 10 atm

D $\quad 0.1 \mathrm{~atm}$

## Solution

$\Delta G_{r x n}^{o}=\Delta_{f} G^{o}($ vapour $)-\Delta_{f} G^{o}($ liquid $)$
$\Delta G_{r x n}^{o}=103-100.7=2.3 \mathrm{kcal} / \mathrm{mol}$
$\Delta G_{r \times n}^{o}=-R T \ln K$
$2.3 \mathrm{kcal} / \mathrm{mol} \times 1000 \mathrm{cal} / \mathrm{kcal}=-2 \mathrm{cal} / \mathrm{mol} / \mathrm{K} \times 500 \mathrm{~K} \times \ln \mathrm{K}$
$\ln K=2.3$
$K=10 \mathrm{~atm}=$ Vapour pressure of liquid 'S'
Vapour pressure of liquid 'S' at 500 K is approximately equal to 10 atm .

## \#870113

In $\mathrm{XeO}_{3} \mathrm{~F}_{2}$, the number of bond pair(s), $\pi$-bond(s) and lone pair(s) on Xe atom respectively are.

5, 3, 0
B $5,2,0$
C $4,2,2$
D $4,4,0$

## Solution

In $\mathrm{XeO}_{3} F_{2}$, the number of bond pair(s), $\pi$-bond(s) and lone pair(s) on Xe atom are $5,3,0$ respectively. There are three $X e=O$ double bonds and two $X e-F$ single bonds. All the valence electrons of $X e$ are involved in bonding.

$\mathrm{XeO}_{3} \mathrm{~F}_{2}$


Which of the following best describes the diagram of a molecular orbital?

A $\quad$ A bonding $\pi$ orbital

B A non-bonding orbital

C An antibonding $\sigma$ orbital

D An antibonding $\pi$ orbital

## Solution

An antibonding $\pi$ orbital best describes the diagram of a molecular orbital. Two p orbitals laterally overlap to form pi bond. Out of phase combination of these two porbitals give $\pi^{*}$ MO.

## \#870120

Following four solutions are prepared by mixing different volumes of NaOH and HCl of different concentrations, pH of which one of them will be equal to 1 ?

A $\quad 55 \mathrm{~mL} \frac{M}{10} \mathrm{HCl}+45 \mathrm{~mL} \frac{M}{10} \mathrm{NaOH}$
B $\quad 75 \mathrm{~mL} \frac{M}{5} \mathrm{HCl}+25 \mathrm{~mL} \frac{M}{5} \mathrm{NaOH}$
C $\quad 100 \mathrm{~mL} \frac{M}{10} \mathrm{HCl}+100 \mathrm{~mL} \frac{M}{10} \mathrm{NaOH}$
D $\quad 60 \mathrm{~mL} \frac{M}{10} \mathrm{HCl}+40 \mathrm{~mL} \frac{M}{10} \mathrm{NaOH}$

## Solution

$75 \mathrm{~mL} \frac{M}{5} \mathrm{HCl}+25 \mathrm{~mL} \frac{M}{5} \mathrm{NaOH}$
$25 \mathrm{~mL} \frac{M}{5} \mathrm{NaOH}$ will neutralise $25 \mathrm{~mL} \frac{M}{5} \mathrm{HCl}$
$75-25=50 \mathrm{~mL} \frac{M}{5} \mathrm{HCl}$ will remain.
Total volume will be $75+25=100 \mathrm{~mL}$.
$50 \mathrm{~mL} \frac{M}{5} \mathrm{HCl}$ is diluted to 100 mL .
$\left[H^{+}\right]=[\mathrm{HCl}]=\frac{M}{5} \times \frac{50}{100}=\frac{M}{10}$
$p H=-\log _{10}\left[H^{+}\right]=-\log _{10} \frac{M}{10}=1$

## \#870123

Given
(i) $2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$;
$\Delta_{r} G^{o}=+1487.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(ii) $2 \mathrm{CO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)$;
$\Delta_{r} G^{o}=-514.4 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$
Free energy change, $\Delta_{r} G^{o}$ for the reaction
$2 \mathrm{Fe}_{2} \mathrm{O}_{3}(s)+6 \mathrm{CO}(g) \rightarrow 4 \mathrm{Fe}(s)+6 \mathrm{CO}_{2}(g)$ will be.

A $\quad-112.4 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$

B $\quad-56.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C $\quad-208.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D $\quad-168.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$

## Solution

(i) $2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$;
$\Delta_{r} G^{o}=+1487.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(ii) $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$;
$\Delta_{r} G^{o}=-514.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Multiply above reaction with 3
(iii) $6 \mathrm{CO}(\mathrm{g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})$;
$\Delta_{r} G^{o}=3 \times-514.4=-1543.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
When we add reaction (i) and reaction (iii), we get reaction (iv)
(iv) $2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+6 \mathrm{CO}(\mathrm{g}) \rightarrow 4 \mathrm{Fe}(\mathrm{s})+6 \mathrm{CO}_{2}(\mathrm{~g})$

Free energy change, $\Delta_{r} G^{o}$ for the reaction will be.
$1487.0-1543.2=-56.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$

## \#870125

At a certain temperature in a 5 L vessel, 2 moles of carbon monoxide and 3 moles of chlorine were allowed to reach equilibrium according to the reaction, $\mathrm{CO}^{2}+\mathrm{Cl}_{2} \rightleftharpoons \mathrm{COCl}_{2}$ At equilibrium, if one mole of CO is present then equilibrium constant $\left(K_{c}\right)$ for the reaction is?
2.5

B 4

C 2
D 3

## Solution

Initially, 2 moles of CO are present.
At equilibrium, 1 mole of CO is present.
Hence, 2-1 = 1 mole of CO has reacted.
1 mole of CO will react with 1 mole of $\mathrm{Cl}_{2}$ to form 1 mole of $\mathrm{COCl}_{2}$.
$3-1=2$ moles of $C l_{2}$ remains at equilibrium.
The equilibrium constant
$K_{c}=\frac{\left[\mathrm{COCl}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{Cl}_{2}\right]}$
$K_{c}=\frac{\frac{1 \mathrm{~mol}}{5 \mathrm{~L}}}{\frac{1 \mathrm{~mol}}{5 \mathrm{~L}} \times \frac{2 \mathrm{~mol}}{5 \mathrm{~L}}}$
$K_{c}=2.5$

## \#870129

The correct order of spin-only magnetic moments among the following is?(Atomic number: $\mathrm{Mn}=25, \mathrm{Co}=27, \mathrm{Ni}=28, \mathrm{Zn}=30$ ).

A $\quad\left[\mathrm{ZnCl}_{4}\right]^{2-}>\left[\mathrm{NiCl}_{4}\right]^{2-}>\left[\mathrm{CoCl}_{4}\right]^{2-}>\left[\mathrm{MnCl}_{4}\right]^{2-}$
B $\quad\left[\mathrm{CoCl}_{4}\right]^{2-}>\left[\mathrm{MnCl}_{4}\right]^{2-}>\left[\mathrm{NiCl}_{4}\right]^{2-}>\left[\mathrm{ZnCl}_{4}\right]^{2-}$
C $\quad\left[\mathrm{NiCl}_{4}\right]^{2-}>\left[\mathrm{CoCl}_{4}\right]^{2-}>\left[\mathrm{MnCl}_{4}\right]^{2-}>\left[\mathrm{ZnCl}_{4}\right]^{2-}$
D $\left[\mathrm{MnCl}_{4}\right]^{2-}>\left[\mathrm{CoCl}_{4}\right]^{2-}>\left[\mathrm{NiCl}_{4}\right]^{2-}>\left[\mathrm{ZnCl}_{4}\right]^{2-}$

## Solution

The complex having higher number of unpaired electrons will have higher value of spin-only magnetic moment
The correct order of spin-only magnetic moments is $\left[\mathrm{MnCl}_{4}\right]^{2-}>\left[\mathrm{CoCl}_{4}\right]^{2-}>\left[\mathrm{NiCl}_{4}\right]^{2-}>\left[\mathrm{ZnCl}_{4}\right]^{2-}$.
In theses complexes, the central metal ion is in +2 oxidation state.
$Z n^{2+}$ has $3 d^{10}$ outer electronic configuration with 0 unpaired electrons.
$N i^{2+}$ has $3 d^{8}$ outer electronic configuration with 2 unpaired electrons.
$\mathrm{Co}^{2+}$ has $3 d^{7}$ outer electronic configuration with 3 unpaired electrons.
$M n^{2+}$ has $3 d^{5}$ outer electronic configuration with 5 unpaired electrons.

## \#870131

When 2-butyne is treated with $\mathrm{H}_{2} /$ Lindlar's catalyst, compound X is produced as the major product and when treated with $\mathrm{Na} /$ liq. $\mathrm{NH}_{3}$ it produces Y as the major product. Which

A $\quad \mathrm{Y}$ will have higher dipole moment and higher boiling point than X

B $\quad \mathrm{Y}$ will have higher dipole moment and lower boiling point than X

C $X$ will have lower dipole moment and lower boiling point than $Y$
D
$X$ will have higher dipole moment and higher boiling point than $Y$

## Solution

When 2-butyne is treated with $\mathrm{H}_{2}$ /Lindlar's catalyst, compound X (cis-2-butene) is produced as the major product and when treated with Na /liq. $\mathrm{NH} \mathrm{H}_{3}$ it produces Y (trans-2-
butene) as the major product. X will have higher dipole moment and higher boiling point than Y . Cis isomer will have higher dipole moment and higher boiling point than trans. trans-2-butene has center of inversion and hence, zero dipole moment

The boiling points of cis and trans isomers of 2-butene are 277 K and 274 K respectively

## \#870134

For a first order reaction, $A \rightarrow P, t_{1 / 2}$ (half-life) is 10 days. The time required for $\frac{1^{\text {th }}}{4}$ conversion of $A$ (in days) is: $(\ln 2=0.693$, $\ln 3=1.1)$.

A $\quad 3.2$

B $\quad 2.5$

C $\quad 4.1$
D 5

## Solution

The half life $t_{1 / 2}=10$ days
The decay constant $k=\frac{0.693}{t_{1 / 2}}=\frac{0.693}{10 \text { days }}=0.0693$ day $^{-1}$
The time required for one fourth conversion
$t=\frac{2.303}{k} \log _{10} \frac{a}{a-x}$
$t=\frac{2.303}{0.0693 d a y^{-1}} \log _{10} \frac{1}{1-(1 / 4)}$
$t=4.1$ days

## \#870137



The major product formed in the following reaction is?

A


B



D


## Solution

The major product formed is represented by option (A).
Nitro group is electron withdrawing group. Hence, increases the acidity of H atom (attached to C atom bearing nitro group).
Hence, removal of H becomes easy. Also, the newly formed double bond is in conjugation with nitro group.
Note: In the given reaction, a molecule of HCl is lost and $C=C$ double bond is formed. THus, it is dehydrohalogenation reaction.


## \#870140

The de-Broglie's wavelength of electron present in first Bohr orbit of ' H ' atom is?

A $\quad 4 \times 0.529{ }_{A}^{\circ}$
B $\quad 2 \pi \times 0.529{ }^{\circ}$
C $\quad \frac{0.529}{2 \pi} \stackrel{\circ}{A}$
D $\quad 0.529{ }^{\circ}$

## Solution

The de-Broglie's wavelength of electron present in first Bohr orbit of ' H ' atom is $2 \pi \times 0.529 \stackrel{\circ}{\mathrm{~A}}$.
First Bohr orbit of 'H' atom has radius $r=0.529 A^{o}$
Also, the angular momentum is quantised.
$m v r=\frac{h}{2 \pi}$
$2 \pi r=\frac{h^{2}}{m v}=\lambda$
$\lambda=2 \pi \times 0.529{ }_{A}^{\circ}$

## \#870143

Lithium aluminium hydride reacts with silicon tetrachloride to form.

A LiCl, $\mathrm{AlH}_{3}$ and $\mathrm{SiH}_{4}$

B $\mathrm{LiCl}, \mathrm{AlCl}_{3}$ and $\mathrm{SiH}_{4}$
C $\mathrm{LiH}, \mathrm{AlCl}_{3}$ and $\mathrm{SiCl}_{2}$
D LiH, $\mathrm{AlH}_{3}$ and $\mathrm{SiH}_{4}$

## Solution

Lithium aluminium hydride reacts with silicon tetrachloride to form LiCl (lithium chloride),
$\mathrm{AlCl}_{3}$ (aluminum trichloride) and $\mathrm{SiH}_{4}$ (silicon hydride).
$\mathrm{SiCl}_{4}+\mathrm{LiAlH}_{4} \rightarrow \mathrm{LiCl}+\mathrm{AlCl}_{3}+\mathrm{SiH}_{4}$

## \#870147

The correct order of electron affinity is?

A $\quad \mathrm{O}>\mathrm{F}>\mathrm{Cl}$
B $\quad \mathrm{F}>\mathrm{O}>\mathrm{Cl}$
C $\mathrm{F}>\mathrm{Cl}>\mathrm{O}$
D $\mathrm{Cl}>\mathrm{F}>\mathrm{O}$

## Solution

The correct order of electron affinity is $\mathrm{Cl}>\mathrm{F}>\mathrm{O}$
On moving from left to right across a period, the electron affinity becomes more negative.
On moving from top to bottom in a group, the electron affinity becomes less negative.
Chlorine has more negative electron affinity than fluorine. Because adding an electron to fluorine $2 p$ orbital causes greater repulsion than adding an electron to chlorine 3 p orbital which is larger in size

Note: The electron affinity (in $\mathrm{kJ} / \mathrm{mol}$ ) of $\mathrm{CI}, \mathrm{F}$ and O is $-349,-328$ and -141 respectively.

## \#870153

Two 5 molal solutions are prepared by dissolving a non-electrolyte non-volatile solute separately in the solvents X and Y . The molecular weights of the solvents are $M_{X}$ and $M_{Y}$, respectively where $M_{X}=\frac{3}{4} M_{Y}$. The relative lowering of vapour pressure of the solution in X is " m " times that of the solution in Y . Given that the number of moles of solute is very small in comparison to that of solvent, the value of " m " is?

A

B $\frac{1}{2}$
C $\quad \frac{1}{4}$
D $\frac{4}{3}$

## Solution

THe relationship between molar masses of two solvents is
$M_{X}=\frac{3}{4} M_{Y} \ldots \ldots$. .(1)
THe relative lowering of vapour pressure of two solutions is
$\left(\frac{\Delta P}{P}\right)_{X}=m\left(\frac{\Delta P}{P}\right)_{Y}$
But, the relative lowering of vapour pressure of solution is directly proportional to the mole fraction of solute.
$M_{x} \times \frac{5}{1000}=m \times M_{Y} \times \frac{5}{1000} \ldots .$. (2)
Substitute equation (1) in equation (2).
$\frac{3}{4} \times M_{Y} \times \frac{5}{1000}=m \times M_{Y} \times \frac{5}{1000}$
$m=\frac{3}{4}$
Note:
5 molal solution means 5 moles of solute are dissolved in 1 kg (or 1000 g ) of solvent. The number of moles of solvent $=\frac{1000 g}{M}$
The mole fraction of solute

$$
\begin{aligned}
& =\frac{5}{1000 / M_{5}} \\
& =M \times \frac{5}{1000}
\end{aligned}
$$

\#870154


On the treatment of the following compound with a strong acid, the most susceptible site for bond cleavage is?

A $\quad \mathrm{O} 2-\mathrm{C} 3$
B $O 5-C 6$
C $\mathrm{C} 4-\mathrm{O} 5$

D $\quad \mathrm{C} 1-\mathrm{O} 2$

## Solution

On the treatment of the given compound with a strong acid, the most susceptible site for bond cleavage is $\mathrm{O5}-\mathrm{C} 6$.
The lone pair of electrons on $O 2$ is involved in resonance with $C=C$. Hence, $O 2$ will not be protonated
The lone pair of electrons on $O 5$ is not involved in resonance with $C=C$. Hence, $O 5$ will be protonated. Chloride ion will then attack least substituted C atom ( $C 6$ )


## \#870156

All of the following share the same crystal structure except.

A $\quad \mathrm{RbCl}$

B $\quad \mathrm{NaCl}$
c CsCl
D LiCl

## Solution

$\mathrm{RbCl}, \mathrm{NaCl}$ and CsCl share the same crystal structure except LiCl .
LiCl is deliquescent. It crystalises as a hydrate $\mathrm{LiCl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Other alkali metal chlorides do not form hydrates.

## \#870158

The total number of possible isomers for square-planar $\left[\mathrm{Pt}(\mathrm{Cl})\left(\mathrm{NO}_{2}\right)\left(\mathrm{NO}_{3}\right)(\mathrm{SCN})\right]^{2-}$ is?

A 16

B $\quad 12$
C 8
D $\quad 24$

## Solution

The total number of possible isomers for square-planar $\left[\mathrm{Pt}(\mathrm{Cl})\left(\mathrm{NO}_{2}\right)\left(\mathrm{NO}_{3}\right)(\mathrm{SCN})\right]^{2-}$ is 12 .
THe square-planar complex of type
$[M a b c d]^{n \pm}$, where all four ligands are different, has 3 geometrical isomers. But if one of the ligands is ambidentate, then $2 \times 3=6$ geometrical isomers are possible. But if two ligands are ambidentate, then $4 \times 3=12$ geometrical isomers are possible.
In our example, both $\mathrm{NO}_{2}^{-}$and $\mathrm{SCN}^{-}$are ambidentate ligands.

## \#870160

Two compounds I and II are eluted by column chromatography(adsorption of I $>\mathrm{II}$ ). Which one of the following is a correct statement?

A II moves slower and has higher $R_{f}$ value than I

B II moves faster and has higher $R_{f}$ value than I
C I moves faster and has higher $R_{f}$ value than II

## Solution

Two compounds I and II are eluted by column chromatography(adsorption of I $>\mathrm{II}$ ). The statement (B) is a correct statement.
II moves faster and has higher $R_{f}$ value than I

Since, adsorption of I>II, I is firmly attached to column (stationary phase). Hence, it will move slowly and will move little distance. Also, II is loosely attached to column (stationary phase). Hence, it will move faster and will move large distance.

## \#870161

The number of P - O bonds is $\mathrm{P}_{4} O_{6}$ is?

A 9

B 6
C 12
D 18
Solution
The number of $\mathrm{P}-\mathrm{O}$ bonds is $P_{4} O_{6}$ is 12 .


## \#870162



The major product formed in the following reaction is?

A


B

c


D


## Solution

PCC oxidizes primary alcohols to aldehydes and and secondary alcohols to ketones. PCC does not oxidize aldehydes to carboxylic acids.
In the above reaction, $-\mathrm{OCOCH}_{3}$ group is hydrolyzed to secondary alcohol which is then oxidised (with PCC) to ketone.



## \#870164

For per gram of reactant, the maximum quantity of $N_{2}$ gas is produced in which of the following thermal decomposition reactions? (Given: Atomic wt. $-\mathrm{Cr}=52 u, \mathrm{Ba}=137 u$ ).

A $\quad \mathrm{Ba}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{~s}) \rightarrow \mathrm{Ba}(\mathrm{C})+3 \mathrm{~N}_{2}(\mathrm{~g})$
B $\quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{~s}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})$
C $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$

D $\quad 2 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

## Solution

For per gram of reactant, the maximum quantity of $N_{2}$ gas is produced in the thermal decomposition $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
(A)

Molar mass of $\mathrm{Ba}\left(N_{3}\right)_{2}(s)=221 \mathrm{~g} / \mathrm{mol}$. 1 mole of $\mathrm{Ba}\left(N_{3}\right)_{2}(s)$ will give 3 moles of $N_{2}$
$\frac{1 \mathrm{~g}}{221 \mathrm{~g} / \mathrm{mol}}$ moles of $\mathrm{Ba}\left(N_{3}\right)_{2}(s)$ will give $3 \times \frac{1}{221}=0.014$ moles of $N_{2}$
(B)

Molar mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=252 \mathrm{~g} / \mathrm{mol}$. 1 mole of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ will give 1 mole of $\mathrm{N}_{2}$ $\frac{1 \mathrm{~g}}{252 \mathrm{~g} / \mathrm{mol}}$ moles of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ will give $1 \times \frac{1}{252}=0.039$ moles of $\mathrm{N}_{2}$
(C)

Molar mass of $\mathrm{NH}_{3}=17 \mathrm{~g} / \mathrm{mol}$. 2 mole of $\mathrm{NH}_{3}$ will give 1 mole of $\mathrm{N}_{2}$
$\frac{1 \mathrm{~g}}{17 \mathrm{~g} / \mathrm{mol}}$ moles of $\mathrm{NH}_{3}$ will give $\frac{1}{2 \times 17}=0.0297$ moles of $\mathrm{N}_{2}$
(D)

Molar mass of $\mathrm{NH}_{4} \mathrm{NO}_{3}=80 \mathrm{~g} / \mathrm{mol} .1$ mole of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ will give 1 mole of $\mathrm{N}_{2}$
$\frac{1 \mathrm{~g}}{80 \mathrm{~g} / \mathrm{mol}}$ moles of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ will give $1 \times \frac{1}{80}=0.0125$ moles of $\mathrm{N}_{2}$

## \#870169

If x gram of gas is adsorbed by m gram of adsorbent at pressure P , the plot of $\log \frac{x}{m}$ versus $\log \mathrm{P}$ is linear. The slope of the plot is? ( n and k are constants and $\mathrm{n}>1$ )

D n

## Solution

If x gram of gas is adsorbed by m gram of adsorbent at pressure P , the plot of $\log \frac{x}{m}$ versus $\log \mathrm{P}$ is linear. The slope of the plot is $\frac{1}{n}$ ( n and k are constants and $\mathrm{n}>1$ )
According to Freundlich adsorption isotherm,
$\frac{x}{m}=k P^{\frac{1}{n}}$
$\log _{10} \frac{x}{m}=\frac{1}{n} \log _{10} P+\log _{10} k$
This is the equation of straight line of type $y=m x+c$
$\log _{10} k$ is the y intercept.

## \#870171

Biochemical Oxygen Demand(BOD) value can be a measure of water pollution caused by the organic matter. Which of the following statements is correct?

A Polluted water has BOD value higher than 10 ppm

B Aerobic bacteria decrease the BOD value

C Anaerobic bacteria increase the BOD value

D Clean water has BOD value higher than 10 ppm

## Solution

Clean water has BOD value less than 5 ppm. Polluted water has BOD value higher than 10 ppm. The option (A) represents correct statement.

## \#870172

In the leaching method, bauxite ore is digested with a concentrated solution of NaOH that produces ' X '. When $C O_{2}$ gas is passed through the aqueous solution of ' X ', a hydrated compound ' $Y$ ' is precipitated. ' $X$ ' and ' $Y$ ' respectively are.

A $\quad \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]$ and $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$
B $\quad \mathrm{Al}(\mathrm{OH})_{3}$ and $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$

C $\mathrm{NaAlO}_{2}$ and $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$

D $\mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]$ and $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$

## Solution

 compound ' Y ' is precipitated. ' X ' and ' Y ' are
$\mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]$ and $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$
respectively.

Alumina Sodium aluminate
$2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]_{(a q)}+\mathrm{CO}_{2(\mathrm{~g})} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3} \times \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}+2 \mathrm{NaHCO}_{3(\mathrm{aq})}$
Hydrated alumina

## \#870174

Which of the following statements is not true?

A Chain growth polymerisation involves homopolymerisation only

B Chain growth polymerisation includes both homopolymerisation and copolymerisation

C Nylon 6 is an example of step-growth polymerisation

D Step growth polymerisation requires a bifunctional monomer

## Solution

The statement $(B)$ is not true. Chain growth polymerisation (or addition polymerisation) involves homopolymerisation only. Examples of such polymers include polythene, orlon and teflon.

## \#870175

The dipeptide, Gln-Gly, on treatment with $\mathrm{CH}_{3} \mathrm{COCl}$ followed by aqueous work up gives.

A


B

c


D


## Solution

The dipeptide, Gln-Gly, on treatment with $\mathrm{CH}_{3} \mathrm{COCl}$ followed by aqueous work up gives the product shown in option (A).
Amino group of glutamine is acetylated. Amide group of glutamine is not acetylated.
Note
Acetylation of amide requires activation of amides and/or acyl donors, since the nitrogen atom of amides is less basic than that of the corresponding amines due to amide resonance.
C870176

The increasing order of the acidity of the following carboxylic acids is?

A $\quad$ III $<\|<$ IV $<$ I
B $\quad$ $<$ III $<$ II $<$ IV
C $\quad$ V $<\| l$ III $<$ I
D $\quad$ II $<$ IV $<$ III $<$ I

## Solution

The increasing order of the acidity of the carboxylic acids is III $<I I<I V<I$.

In aromatic acids, electron withdrawing groups like $-\mathrm{Cl},-\mathrm{CN},-\mathrm{NO}_{2}$ increases the acidity whereas electron releasing groups like $-\mathrm{CH}_{3},-\mathrm{OH}^{2},-\mathrm{OCH}_{3},-\mathrm{NH}_{2}$ decreases the acidity.

## \#870142

Let $f: A \rightarrow B$ be a function defined as $f(x)=\frac{x-1}{x-2}$, where $A=R-\{2\}$ and $B=R-\{1\}$. Then $f$ is
A Invertible and $f^{-1}(y)=\frac{2 y+1}{y-1}$
B Invertible and $f^{-1}(y)=\frac{3 y-1}{y-1}$
C No invertible
D Invertible and $f^{-1}(y)=\frac{2 y-1}{y-1}$

## Solution

Let
$y=f(x)$
$\Rightarrow y=\frac{x-1}{x-2}$
$\Rightarrow y x-2 y=x-1$
$\Rightarrow(y-1) x=2 y-1$
$\Rightarrow x=f^{-1}(y)=\frac{2 y-1}{y-1}$
So on the given domain the function is invertible and its inverse can be computed as shown above.
So, option D is the correct answer.

## \#870146

The coefficient of $x^{10}$ in the expansion of $(1+x)^{2}\left(1+x^{2}\right)^{3}\left(1+x^{3}\right)^{4}$ is equal to

52
B $\quad 44$

C 50

D 56

## Solution

$(1+x)^{2}=1+2 x+x^{2}$
$\left(1+x^{2}\right)^{3}=1+3 x^{2}+3 x^{4}+x^{6}$
$\left(1+x^{3}\right)^{4}=1+4 x^{3}+6 x^{6}+4 x^{9}+x^{12}$
From the above the binomial expansion, we want the terms containing $x^{10}$ after multiplication
So, the combinations are:
$x \cdot x^{9}, x \cdot x^{6} \cdot x^{3}, x^{2} \cdot x^{2} \cdot x^{6}, x^{4} \cdot x^{6}$
Their coefficients are $2 \times 4,2 \times 1 \times 4,1 \times 3 \times 6,3 \times 6$
Which is $8,8,18,18$
Sum of the coefficients is $8+8+18+18=52$
Hence, the coefficient of $x^{10}$ in the expansion of $(1+x)^{2}\left(1+x^{2}\right)^{3}\left(1+x^{3}\right)^{4}$ is 52

## To find: Coefficeint of

$x^{10}$
Given, $(1+x)^{2}\left(1+x^{2}\right)^{3}\left(1+x^{3}\right)^{4}$
Using the above series using binomial coefficients,
$\Rightarrow\left[\binom{2}{0} x^{2}+\binom{2}{1} x+\binom{2}{2}\right] \times\left[\binom{3}{0} x^{6}+\binom{3}{1} x^{4}+\binom{3}{2} x^{2}+\binom{3}{3}\right] \times\left[\binom{4}{0} x^{12}+\binom{4}{1} x^{9}+\binom{4}{2} x^{6}+\binom{4}{3} x^{3}+\binom{4}{4}\right]$

Finding the coefficient of $x^{10}$ : Multiply individual term to obtain the term $x^{10}$ and note down its coefficients. Find all such possible combinations.

1. $\binom{4}{1} x^{9} \times\binom{ 3}{3} \times\binom{ 2}{1} x=\binom{4}{1} \times\binom{ 3}{3} \times\binom{ 2}{1} x^{10}=8 x^{10}$
2. $\binom{4}{2} x^{6} \times\binom{ 3}{1} x^{4} \times\binom{ 2}{2}=\binom{4}{2} \times\binom{ 3}{1} \times\binom{ 2}{2} x^{10}=18 x^{10}$
3. $\binom{4}{2} x^{6} \times\binom{ 3}{2} x^{2} \times\left(\begin{array}{l}\binom{0}{0} x^{2}=\binom{4}{2} \times\binom{ 3}{2} \times\binom{ 2}{0} x^{10}=18 x^{10} .\end{array}\right.$
4. $\binom{4}{3} x^{3} \times\binom{ 3}{0} x^{6} \times\binom{ 2}{1} x=\binom{4}{3} \times\binom{ 3}{0} \times\binom{ 2}{1} x^{10}=8 x^{10}$

Adding all the coefficients of $x^{10}$ we get, $52 x^{10}$.

Therefore, the coefficient of $x^{10}$ in the expansion is 52 .

## \#870148

If the system of linear equations
$x+a y+z=3$
$x+2 y+2 z=6$
$x+5 y+3 z=b$
has no solution, then

A $\quad a=1, b \neq 9$

B $\quad a \neq-1, b=9$

C $\quad a=-1, b=9$

D $\quad a=-1, b \neq 9$
Solution
If the system of equations has no solution then
$\Delta=0$ and at least one of $\Delta_{1}, \Delta_{2}$ and $\Delta_{3}$ is not zero.
$\Delta=\left|\begin{array}{lll}1 & a & 1 \\ 1 & 2 & 2 \\ 1 & 5 & 3\end{array}\right|=0$
$\Longrightarrow-a-1=0 \Longrightarrow a=-1$
$\Delta_{2}=\left|\begin{array}{lll}1 & 1 & 3 \\ 1 & 2 & 6 \\ 1 & 3 & b\end{array}\right| \neq 0$
$\Longrightarrow b \neq 9$

## \#870150

If $f(x)$ is a quadratic expression such that $f(1)+f(2)=0$, and -1 is a root of $f(x)=0$, then the other root of $f(x)=0$ is

A $-\frac{5}{8}$
B $-\frac{8}{5}$
C $\quad 5$
$\overline{8}$
$\frac{8}{5}$

## Solution

Let
$\alpha$ and
$\beta=-1$ be the roots of the polynomial, then we have
$f(x)=x^{2}+(1-\alpha) x-\alpha$.
$f(1)=2-2 \alpha \ldots \ldots . i$
$f(2)=6-3 \alpha \ldots \ldots . . i i$
$f(1)+f(2)=0 \Rightarrow 2-2 \alpha+6-3 \alpha=0 \Rightarrow \alpha=\frac{8}{5}$
So the other root is $\frac{8}{5}$
So the correct answer is option D .

B 120

C 264

D 270

## Solution

Case 1: If all four letters are different then the number of words
$={ }^{5} C_{4} \times 4!=120$

Case 2: If 2 letters are R and other 2 different letters are chosen from $\mathrm{B}, \mathrm{A}, \mathrm{C}, \mathrm{K}$ then the number of words $={ }^{4} C_{2} \times \frac{4!}{2!}=72$

Case 3: If 2 letters are A and other 2 different letters are chosen from $B, R, C, K$ then the number of words $={ }^{4} C_{2} \times \frac{4!}{2!}=72$

Case 4: when word is formed using $2 R^{\prime} s$ and $2 A^{\prime} s=\frac{4!}{2!2!}=6$

Then the number of four-letter words that can be formed $=120+72+72+6=270$

## \#870155

The number of solutions of $\sin 3 x=\cos 2 x$, in the interval $\left(\frac{\pi}{2}, \pi\right)$ is

A 3

B 4

C 2

D $\quad 1$

## Solution

Let us see the solution graphically as depicted above.
Clearly there is only 1 solution in the given interval.
Note we are asked about the number of solutions and not the solutions themselves, so drawing a graph is enough or one could just check the signs of the function $\sin 3 x-\cos 2 x$ in this interval and discover that there is only one sign change so there is only one solution. There is no need to solve the equation.

So option D is the correct answer.


## \#870157

The curve satisfying the differential equation, $\left(x^{2}-y^{2}\right) d x+2 x y d y=0$ and passing through the point $(1,1)$ is

A A circle of radius two

B
A circle of radius one

C A hyperbola
D An ellipse

## Solution

$\left(x^{2}-y^{2}\right) d x+2 x y d y=0$
$\Rightarrow \frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y}$

Put $y=v x$
$\frac{d y}{d x}=v+x \frac{d v}{d x}$
$\Rightarrow v+x \frac{d v}{d x}=\frac{v^{2} x^{2}-x^{2}}{2 v x^{2}}$
$\Rightarrow v+x \frac{d v}{d x}=\frac{v^{2}-1}{2 v}$
$\Rightarrow x \frac{d v}{d x}=\frac{-v^{2}-1}{2 v}$
$\Rightarrow \frac{2 v d v}{v^{2}+1}=-\frac{d x}{x}$

Integrating we get;
$\ln \left|v^{2}+1\right|=-\ln |x|+\ln c$
$\frac{y^{2}}{x^{2}}+1=\frac{c}{x}$
Putting $(1,1)$
$c=2$
$x^{2}+y^{2}-2 x=0$
hence its is a circle of radius 1

## \#870159

A player $X$ has a biased coin whose probability of showing heads is $p$ and a player $Y$ has a fair coin. They start playing a game with their own coins and play alternately. The player who throws a head first is a winner. If $X$ starts the game, and the probability of winning the game by both the players is equal, then the value of ' $p$ ' is

A $\frac{1}{3}$
B $\quad \frac{1}{5}$
C $\quad 1$
D $\quad 2$

Solution
$X$ wins when the outcome is one of the following set of outcomes:
H,TTH, TTTTH, ....
Since subsequent tosses are independent, the probability that $X$ wins is $p+\frac{p}{4}+\frac{p}{16}+\ldots=\frac{4 p}{3}$
Similarly $Y$ wins if the outcome is one of the following: TH, TTTH, TTTTTTH, ...
So, the probability that $Y$ wins is $\frac{1-p}{2}+\frac{1-p}{8}+\frac{1-p}{32}=\frac{2(1-p)}{3}$
Since $X$ and $Y$ win with equal probability, we have $\frac{4 p}{3}=\frac{2(1-p)}{3} \Rightarrow p=\frac{1}{3}$
So, option A is the correct answer.

## \#870180

Consider the following two statements:
Statement $p$ :
The value of $\sin 120^{\circ}$ can be divided by taking $\theta=240^{\circ}$ in the equation $2 \sin \frac{\theta}{2}=\sqrt{1+\sin \theta}-\sqrt{1-2 \theta}$.
Statement $q$ :

The angles $A, B, C$ and $D$ of any quadrilateral $A B C D$ satisfy the equation $\cos \left(\frac{1}{2}(A+C)\right)+\cos \left(\frac{1}{2}(B+D)\right)=0$
Then the truth values of $p$ and $q$ are respectively.

A F, T

B T, T
c F, F

D T,F

## Solution

For statement $p$
$\sin 120^{\circ}=\frac{\sqrt{3}}{2} \Rightarrow 2 \sin 120^{\circ}=\sqrt{3}$
$\sqrt{1+\sin 240^{\circ}}-\sqrt{1-\sin 240^{\circ}}=\sqrt{\frac{1-\sqrt{3}}{2}}-\sqrt{\frac{1+\sqrt{3}}{2}} \neq \sqrt{3}$
For statement q:
$\frac{A+C}{2}+\frac{B+D}{2}=\pi \Rightarrow \cos \left(\frac{A+C}{2}\right)+\cos \left(\frac{B+D}{2}\right)=0$
So statement p is False and statement q is True. So the correct answer is option A.

## \#870182

$\int \frac{2 x+5}{\sqrt{7-6 x-x^{2}}} d x=A \sqrt{7-6 x-x^{2}}+B \sin ^{-1}\left(\frac{x+3}{4}\right)+C$
(where $C$ is a constant of integration), then the ordered pair $(A, B)$ is equal to

A $(-2,-1)$
B $\quad(2,-1)$

C $(-2,1)$

D $(2,1)$

## Solution

Note that $7-6 x-x^{2}=16-(x+3)^{2}$ and $\frac{d}{d x}\left(7-6 x-x^{2}\right)=-2 x-6$
So, we have
$\int \frac{2 x+5}{\sqrt{7-6 x-x^{2}}} d x=\int \frac{2 x+6}{\sqrt{7-6 x-x^{2}}} d x-\int \frac{1}{\sqrt{16-(x+3)^{2}}} d x$
$=-2 \sqrt{7-6 x-x^{2}}-\sin ^{-1}\left(\frac{x+3}{4}\right)+C$
So, we have $A=-2, B=-1$.
Thus option A is the correct answer.

## \#870183

A plane bisects the line segment joining the points $(1,2,3)$ and $(-3,4,5)$ at right angles. Then this plane also passes through the point.

A $(-3,2,1)$
B $(3,2,1)$
C $(1,2,-3)$
D $(-1,2,3)$

## Solution

Since the Plane BISECTS the line joining the points, then the Plane must meet the line at the Midpoint of the line which is
$\left(\frac{1-3}{2}, \frac{2+4}{2}, \frac{5+3}{2}\right)=\left(\frac{-2}{2}, \frac{6}{2}, \frac{8}{2}\right)=(-1,3,4) \quad$ (As the line is perpendicular to the plane)

Now, the direction cosines of the plane are $(-3-1,4-2,5-3)=(-4,2,2)$
and now since the midpoint of the line is lying in the plane ,it must satisfy the plane
$\therefore-4(-1)+2(3)+2(2)=\lambda \Rightarrow \lambda=18$

Therefore, Equation of plane $\Rightarrow-4 x+2 y+2 z=18$

Now, out of the given option only one point $(-3,2,1)$ is satisfying the Plane as follows
$\Rightarrow-4(-3)+2(2)+2(1)=18$

Therefore Correct Answer is $A$

## \#870185

If $|z-3+2 i| \leq 4$ then the difference between the greatest value and the least value of $|z|$ is

A $\sqrt{13}$

| B | $2 \sqrt{13}$ |
| :--- | :--- |

C 8
D $4+\sqrt{13}$

## Solution

given equation represents the circle with center
$(3,-2)$ and is of radius
$(R)=4$
$|z|$ represents the distance of point 'z' from origin

Greatest and least distances occur along the normal through the origin
Normal always passes through center of circle

From figure;
let PQ be the normal through origin 'O'
and $C$ be its center $(3,-2)$
it is clear that OP is the least distance
and $O Q$ is the greatest distance

From diagram;
$O P=C P-O C$ and $O Q=C Q+O C$

Here, $C P=C Q=R=4$
$O C=\sqrt{(3-0)^{2}+(-2-0)^{2}}$
$\Rightarrow O C=\sqrt{13}$
$\therefore O P=C P-O C$
$\Rightarrow O P=4-\sqrt{13}$
$\therefore$ Least distance $O P=4-\sqrt{13}$
and $O Q=C Q+O C$
$\Rightarrow O Q=4+\sqrt{13}$
$\therefore \quad$ Greatest distance $=O Q=4+\sqrt{13}$

Difference between greatest and least distance=OQ-OP $=(4+\sqrt{13})-(4-\sqrt{13})$
$\Rightarrow$ Difference $=2 \sqrt{13}$
final answer $=2 \sqrt{13}$
the correct option is ' B '


## \#870187

If the position vectors of the vertices $A, B$ and $C$ of a $\triangle A B C$ are respectively $4 \hat{i}+7 \hat{j}+8 \hat{k,} 2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $2 \hat{i}+5 \hat{j}+7 \hat{k}$, then the position vector of the point, where the bisector of $\angle A$ meets $B C$ is

A $\frac{1}{2}(4 \hat{i}+8 \hat{j}+11 \hat{k})$
B $\frac{1}{3}(6 \hat{i}+13 \hat{j}+18 k \hat{k}$
C $\frac{1}{4}(8 \hat{i}+14 \hat{j}+9 k)$
D $\frac{1}{3}(6 \hat{i}+11 \hat{j}+15 k)$

## Solution

Let angular bisector of $A$ meets side $B C$ at point $P(x, y, z)$

By angular bisector theorem we can say that $A B: A C=B P: P C$
$\therefore B P: P C=c: b$
$\Rightarrow B P: P C=6: 3=2: 1=m: n$
$\Rightarrow P(x, y, z)=\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}, \frac{m z_{2}+n z_{1}}{m+n}\right)$

Here $\mathrm{B}=(2,3,4)=\left(x_{2}, y_{2}, z_{2}\right)$
and $\mathrm{C}=(2,5,7)=\left(x_{3}, y_{3}, z_{3}\right)$

Subtituting values, we get;
$P(x, y, z)=\left(\frac{(2)(2)+(1)(2)}{2+1}, \frac{(2)(5)+(1)(3)}{2+1}, \frac{(2)(7)+(1)(4)}{2+1}\right)$
$P(x, y, z)=\left(\frac{6}{3}, \frac{13}{3}, \frac{18}{3}\right)$
$\therefore$ Position vector of point $P=\frac{1}{3}(6 i+13 j+18 k)$

Hence, the correct option is ' B '.

## \#870188

The foot of the perpendicular drawn from the origin, on the line, $3 x+y=\lambda(\lambda \neq 0)$ is $P$. If the line meets $x$-axis at $A$ and $y$-axis at $B$, then the ratio $B P: P A$ is

A $9: 1$
B $\quad 1: 3$
C $1: 9$
D $\quad 3: 1$

## Solution

Let $(x, y)$ be foot of perpendicular drawn to the point
$\left(x_{1}, y_{1}\right)$ on the line
$a x+b y+c=0$

Relation : $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{-\left(a x_{1}+b y_{1}+c z_{1}\right)}{a^{2}+b^{2}}$

Here $\left(x_{1}, y_{1}\right)=(0,0)$
given line is: $3 x+y-\lambda=0$
$\frac{x-0}{3}=\frac{y-0}{1}=\frac{-((3 \times 0)+(1 \times 0)-\lambda)}{3^{2}+1^{2}}$
$x=\frac{3 \lambda}{10}$ and $y=\frac{\lambda}{10}$

Hence foot of perpendicular $P=\left(\frac{3 \lambda}{10}, \frac{\lambda}{10}\right)$
Line meets $X$-axis at $A=\left(\frac{\lambda}{3}, 0\right)$
and meets Y -axis at $B=(0, \lambda)$
$B P=\sqrt{\left(\frac{3 \lambda}{10}\right)^{2}+\left(\frac{\lambda}{10}-\lambda\right)^{2}}$
$\Rightarrow B P=\sqrt{\frac{9 \lambda^{2}}{100}+\frac{81 \lambda^{2}}{100}}$
$\therefore B P=\sqrt{\frac{90 \lambda^{2}}{100}}$
$A P=\sqrt{\left(\frac{\lambda}{3}-\frac{3 \lambda}{10}\right)^{2}+\left(0-\frac{\lambda}{10}\right)^{2}}$
$\Rightarrow A P=\sqrt{\frac{\lambda^{2}}{900}+\frac{\lambda^{2}}{100}}$
$\therefore A P=\sqrt{\frac{10 \lambda^{2}}{900}}$
$\therefore B P: A P=9: 1$

Hence,correct option is ' A '.

## \#870189

If $f(x)=\sin ^{-1}\left(\frac{2 \times 3^{x}}{1+9^{x}}\right)$, then $f^{\prime}\left(-\frac{1}{2}\right)$ equals.
A $\sqrt{3} \log _{e} \sqrt{3}$
B $\quad-\sqrt{3} \log _{e} \sqrt{3}$
C $-\sqrt{3} \log _{e} 3$
D $\sqrt{3} \log _{e} 3$

## Solution

Given
$f(x)=\sin \left(\frac{2 \times 3^{x}}{1+9^{x}}\right)$

Let $3^{x}=\tan (t)$
$\Rightarrow f(x)=\arcsin \left(\frac{2 \tan (t)}{1+\tan ^{2}(t)}\right)$
as $\sin (2 t)=\frac{2 \tan (t)}{1+\tan ^{2}(t)}$
$\Rightarrow f(x)=\arcsin (\sin (2 t))$
$\therefore f(x)=2 t=2 \arctan \left(3^{x}\right)$
$\rightarrow \frac{\mathrm{d} f}{\mathrm{~d} x}=\frac{2}{1+\left(3^{x}\right)^{2}} \times 3^{x} \cdot \log _{e} 3$
at $\mathrm{x}=\frac{1}{2} \rightarrow \frac{\mathrm{~d} f}{\mathrm{~d} x}=\frac{2}{1+\left(3^{\frac{1}{2}}\right)^{2}} \times 3^{\frac{1}{2}} \cdot \log _{e} 3$
$=\frac{1}{2} \times \sqrt{3} \times \log _{e} 3$
$=\sqrt{3} \times \log _{e} \sqrt{3}$

Hence,correct option is 'Ä'.

## \#870192

Let $A_{n}=\left(\frac{3}{4}\right)-\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{3}-\ldots+(-1)^{n-1}\left(\frac{3}{4}\right)^{n}$ and $B_{n}=1-A_{n}$. Then, the least odd natural number $p$, so that $B_{n}>A_{n}$, for all $n \geq p$ is

A 5
B 7
C $\quad 11$
D $\quad 9$

## Solution

Formula: Let $a, a r, a r^{2}+a r^{3}+\ldots+a r^{n-1}$ be $n$ terms of a a GP. Then its sum is given by, $S=\frac{a\left(1-r^{n}\right)}{1-r}$

Given,
$A_{n}=\left(\frac{3}{4}\right)-\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{3}-\ldots+(-1)^{n-1}\left(\frac{3}{4}\right)^{n}$
It is a Geometric Progression (GP) with $a=\frac{3}{4}, r=\frac{-3}{4}$ and number of terms $=n$
Therefore, $A_{n}=\frac{\frac{3}{4} \times\left(1-\left(\frac{-3}{4}\right)^{n}\right)}{1-\left(\frac{-3}{4}\right)}$
$\Rightarrow A_{n}=\frac{\frac{3}{4} \times\left(1-\left(\frac{-3}{4}\right)^{n}\right)}{\frac{7}{4}}$
$\Rightarrow A_{n}=\frac{3}{7}\left[1-\left(\frac{-3}{4}\right)^{n}\right]$

Also given, $B_{n}=1-A_{n}$

To find: The least odd natural number $p$, such that $B_{n}>A_{n}$
Now, $1-A_{n}>A_{n}$
$\Rightarrow 1>2 \times A_{n}$
$\Rightarrow A_{n}<\frac{1}{2}$
Substituting the value of $A_{n}$ in the above equation, we get
$\frac{3}{7} \times\left[1-\left(\frac{-3}{4}\right)^{n}\right]<\frac{1}{2}$
$\Rightarrow 1-\left(\frac{-3}{4}\right)^{n}<\frac{7}{6}$
$\Rightarrow 1-\frac{7}{6}<\left(\frac{-3}{4}\right)^{n}$
$\Rightarrow \frac{-1}{6}<\left(\frac{-3}{4}\right)^{n}$

Since $n$ is odd, then $\left(\frac{-3}{4}\right)^{n}=(-1) \times \frac{3^{n}}{4}$
Therefore, $\frac{-1}{6}<(-1) \times\left(\frac{3}{4}\right)^{n}$

Multiplying the entire inequality by -1 , we get
$\frac{1}{6}>\left(\frac{3}{4}\right)^{n}$

Now, Applying log to the base $\frac{3}{4}$
$\log _{\frac{3}{4}} \frac{1}{6}<\frac{3}{4}$
$\Rightarrow 6.228<n$

Therefore, $n$ should be 7 .

## \#870195

A normal to the hyperbola, $4 x^{2}-9 y^{2}=36$ meets the co-ordinate axes $x$ and $y$ at $A$ and $B$, respectively. If the parallelogram $O A B P(O$ being the origin) is formed, then the locus of $P$ is

A $\quad 4 x^{2}-9 y^{2}=121$
B $\quad 4 x^{2}+9 y^{2}=121$
C $9 x^{2}-4 y^{2}=169$
D $9 x^{2}+4 y^{2}=169$

## Solution

given hyperbola is:
$4 x^{2}-9 y^{2}=36$
let $\left(x_{0}, y_{0}\right)$ be point of contact of normal on the hyperbola

## Finding slope of normal at that point:

Differntiating hyperbola equation we get; 4.2.x-9.2.y. $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
$\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 x}{9 y}=$ slope of tangent
$\therefore$ slope of normal $=\frac{-9 y}{4 x}$
equation of normal at $\left(x_{0}, y_{0}\right)$ is:
$y-y_{0}=\frac{-9 y_{0}}{4 x_{0}}\left(x-x_{0}\right)$
line intersects $X$ axis at $A$ when $y=0$
$\therefore A=\left(\frac{13 x_{0}}{9}, 0\right)$
similarly $B=\left(0, \frac{13 y_{0}}{4}\right)$
given OABP forms a paralleogram $\rightarrow$ diagonals bisect each other(midpoint of diagonals are same)
midpoint of $\mathrm{OB}=\left(0, \frac{13 y_{0}}{8}\right)=$ midpoint of AP
Let $\mathrm{P}=(\mathrm{x}, \mathrm{y})$
$\therefore$ midpointof $A P=\left(\frac{\frac{13 x_{0}}{9}+x}{2}, \frac{y}{2}\right)$
$\therefore P(x, y)=\left(\frac{-13 x_{0}}{9}, \frac{13 y_{0}}{4}\right) \rightarrow 1$

As $\left(x_{0}, y_{0}\right)$ lie on hyperbola, it shoud the its equation:
$4\left(x_{0}\right)^{2}-9\left(y_{0}\right)^{2}=36$
from equation 1: $\quad x_{0}=\frac{-9 x}{13}$ and $y_{0}=\frac{4 y}{13}$
substituting in hyperbola equation , we get:
$9 x^{2}-4 y^{2}=169$
$\therefore$ locus of point $P$ is hyperbola whose equation is: $9 x^{2}-4 y^{2}=169$
hence correct option is $C$.


## \#870199

Let $f(x)$ be a polynomial of degree 4 having extreme values at $x=1$ and $x=2$.
If $\lim _{x \rightarrow 0}\left(\frac{f(x)}{x^{2}}+1\right)=3$ then $f(-1)$ is equal to
A $\frac{1}{2}$
B 3
2
C $\frac{5}{2}$
D $\frac{9}{2}$

Solution
Given it has extremum values at
$x=1$ and
$x=2$
$\Rightarrow f^{\prime}(1)=0$ and $f^{\prime}(2)=0$

Given $f(x)$ is a fourth degree polynomial

Let $f(x)=a x^{4}+b x^{3}+c x^{2}+d x+c=0$

Given $\lim _{x \rightarrow 0}\left(\frac{f(x)}{x^{2}}+1\right)=3$
$\lim _{x \rightarrow 0}\left(\frac{a x^{4}+b x^{3}+c x^{2}+d x+e}{x^{2}}+1\right)=3$
$\lim _{x \rightarrow 0}\left(a x^{2}+b x+c+\frac{d}{x}+\frac{e}{x^{2}}+1\right)=3$

For limit to have finite value (in this case 3 ) value of ' $d$ ' and 'e' must be 0
$\Rightarrow d=0 \quad \& e=0$

Substituting $x=0$ in limit ;
$\Rightarrow c+1=3$
$\Rightarrow c=2$
$f^{\prime}(x)=4 a x^{3}+3 b x^{2}+2 c x+d$
Applying $f^{\prime}(1)=0, f^{\prime}(2)=0$
$4 a(1)+3 b(1)+2 c(1)+d=0 \quad \Rightarrow 1$
$4 a(8)+3 b(4)+2 c(2)+d=0 \quad \Rightarrow 2$

Substituting $c=2$ and $d=0$
$4 a+3 b+4=0$
$32 a+12 b+8=0$

Solving two equations, we get $a=\frac{1}{2}$ and $b=-2$
$f(x)=\frac{x^{4}}{2}-2 x^{3}+2 x^{2}$
$f(-1)=\frac{-1^{4}}{2}-2(-1)^{3}+2(-1)^{2}$

Hence $f(x)=\frac{9}{2}$

Therefore correct option is ' D '

A $\frac{9}{8}$
B 2
C $\quad \frac{7}{8}$
D $\quad 1$

## Solution

Mean of the date
$7,8,9,7,8,7, \lambda, 8$ is
8
$\therefore M=\frac{7+8+9+7+8+7+\lambda+8}{8}=8$
$\Rightarrow \frac{54+\lambda}{8}=8$
$\Rightarrow \lambda=10$
Now, variance $\sigma^{2}$ is the average of squared difference from mean
So, $\sigma^{2}=\frac{(7-8)^{2}+(8-8)^{2}+(9-8)^{2}+(7-8)^{2}+(8-8)^{2}+(7-8)^{2}+(10-8)^{2}+(8-8)^{2}}{8}$

$$
=\frac{1+0+1+1+0+1+4+0}{8}=\frac{8}{8}=1
$$

Hence, the variance is 1

## \#870203

An angle between the lines whose direction cosines are given by the equations, $l+3 m+5 n=0$ and $5 l m-2 m n+6 n l=0$, is

A $\cos ^{-1}\left(\frac{1}{8}\right)$
B $\quad \cos ^{-1}\left(\frac{1}{6}\right)$
C $\cos ^{-1}\left(\frac{1}{3}\right)$
D $\cos ^{-1}\left(\frac{1}{4}\right)$

## Solution

## Given

$l+3 m+5 n=0$
1
and $5 l m-2 m n+6 n l=0 . . . . . . .2$

Here $l, m, n$ are directional cosines.

From 1, $l=-3 m-5 n$
Substituting equation 1 in equation 2
$5(-3 m-5 n) m-2 m n+6 n(-3 m-5 n)=0$
$15 m^{2}+45 m n+30 n^{2}=0$
$\Rightarrow m^{2}+3 m n+2 n^{2}=0$
$\Rightarrow m^{2}+2 m n+m n+2 n^{2}=0$
$\Rightarrow(m+n)(m+2 n)=0$
$\therefore m=-n$ or $m=-2 n$

For $m=-n ; l=-2 n$
And for $m=-2 n ; l=n$
$\therefore(l, m, n)=(-2 n,-n, n)$
$\operatorname{Or}(l, m, n)=(n,-2 n, n)$
$\Rightarrow(l, m, n)=(-2,-1,1)$
or $\Rightarrow(l, m, n)=(1,-2,1)$
$\cos (\theta)=\frac{A \cdot B}{|A||B|}, \theta$ is angle between the lines
$\Rightarrow \cos (\theta)=\frac{-2 \cdot 1+(-1) \cdot(-2)+1.1}{\sqrt{6} \cdot \sqrt{6}}$
$\Rightarrow \cos (\theta)=\frac{1}{6}$
$\therefore \theta=\cos ^{-1}\left(\frac{1}{6}\right)$

Hence, correct option is ' $B$ '

## \#870205

The tangent to the circle $C_{1}: x^{2}+y^{2}-2 x-1=0$ at the point $(2,1)$ cuts off a chord of length 4 from a circle $C_{2}$ whose centre is $(3,-2)$. The radius of $C_{2}$ is

A $\sqrt{6}$
B 2
C $\sqrt{2}$

D 3

## Solution

Equation of tangent on
$C_{1}$ at
$(2,1)$ is:
$2 x+y-(x+2)-1=0$
$x+y=3$

If it cuts off the chord of the circle $C_{2}$ then the equation of the chord is: $x+y=3$
Distance of the chord from $(3,-2)$
$d=\left|\frac{3-2-3}{\sqrt{2}}\right|=\sqrt{2}$
Length of the chord is $l=4$
$r^{2}=\frac{l^{2}}{4+d^{2}}$ where $r$ is the radius of the circle.
$r^{2}=4+2=6$
$\Rightarrow r=\sqrt{6}$

## \#870206

Suppose $A$ is any $3 \times 3$ non-singular matrix and $(A-3 I)(A-5 I)=O$, where $I=I_{3}$ and $O=O_{3}$. If $\alpha A+\beta A^{-1}=4 I$, then $\alpha+\beta$ is equal to

A 8
B 12

C 13

D $\quad 7$

## Solution

We have
$(A-3 I)(A-5 I)=O$
$A^{2}-8 A+15 I=O$

Multiplying both sides with $A^{-1}$, we get
$A-8 I+15 A^{-1}=O$
$A+15 A^{-1}=8 I$
$\frac{A}{2}+\frac{15 A^{-1}}{2}=4 I$
$\therefore \alpha+\beta=\frac{1}{2}+\frac{15}{2}=\frac{16}{2}=8$

## \#870208

The value of integral $\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{x}{1+\sin x} d x$ is
A $\quad \frac{\pi}{2}(\sqrt{2}+1)$
B $\quad \pi(\sqrt{2}-1)$
C $\quad 2 \pi(\sqrt{2}-1)$
D $\quad \pi \sqrt{2}$

## Solution

Given integral is
$I=\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{x}{1+\sin x} d x$

As in the denominator there is $1+\sin x$, we first rationalise the denominator and then do integration by parts
So multiplying numerator and denominator by $1-\sin x$, we get
$\frac{x(1-\sin x)}{1-(\sin x)^{2}}=\frac{x(1-\sin x)}{(\cos x)^{2}}$
$\Rightarrow=x(1-\sin x) \sec ^{2} x$
$=x \sec ^{2} x-x \sin x \sec ^{2} x=x \sec ^{2} x-x \tan x \sec x$

Now applying integration by parts to this
$\int u v d x=u \int v d x-\int \frac{d u}{d x} \times \int v d x$

Therefore by applying the above formula we get
$I=\int x \sec ^{2} x d x-\int x \sec x \tan x d x$
$=\left[x \tan x-\int \frac{d x}{d x} \tan x d x\right]-\left[x \sec x-\int \frac{d x}{d x} \sec x d x\right]$
$=[x \tan x-\ln |\sec x|]-[x \sec x-\ln |\sec x+\tan x|+c$

Now substituting the limits $\frac{\pi}{4}$ and $\frac{3 \pi}{4}$ we get
$I=\left\{\left[\frac{3 \pi}{4} \tan \frac{3 \pi}{4}-\ln \left|\frac{3 \pi}{4}\right|\right]-\left[\frac{3 \pi}{4} \sec \frac{3 \pi}{4}-\ln \left|\sec \frac{3 \pi}{4}+\tan \frac{3 \pi}{4}\right|\right]\right\}-\left\{\left[\frac{\pi}{4} \tan \frac{\pi}{4}-\ln \left|\frac{\pi}{4}\right|\right]-\left[\frac{\pi}{4} \sec \frac{\pi}{4}-\ln \left|\sec \frac{\pi}{4}+\tan \frac{\pi}{4}\right|\right]\right\}$
$=\frac{\pi}{2}(\sqrt{2}+1)$
We have,
$I=\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{x}{1+\sin x} d x$

Multiply and divide LHS with $(1-\sin x)$, we get
$I=\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{x(1-\sin x)}{1-\sin ^{2} x} d x$
$I=\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{x(1-\sin x)}{\cos ^{2} x} d x$
$I=\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} x\left(\sec ^{2} x-\sec x \tan x\right) d x$
$I=\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} x \sec ^{2} x-\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} x \sec x \tan x d x$

Using integration by parts
$I=\left[(x \tan x)-\left(\int 1 \cdot \tan x d x\right)\right]_{\frac{3 \pi}{4}}^{\frac{3 \pi}{4}}+\left[(x \sec x)-\left(\int 1 \cdot \sec x d x\right)\right]_{\frac{\pi}{4}}^{\frac{3 \pi}{4}}$
$I=[(x \tan x)-(\log |\sec x|)]_{\frac{\pi}{4}}^{\frac{3 \pi}{4}}+\left[(x \sec x)+(\log |\sec x+\tan x|]_{\frac{\pi}{4}}^{\frac{3 \pi}{4}}\right.$
$I=\frac{\pi}{2}(\sqrt{2}+1)$

## \#870212

A tower $T_{1}$ of height $60 m$ is located exactly opposite to a tower $T_{2}$ of height $80 m$ on a straight road. From the top of $T_{1}$, if the angle of depression of the foot of $T_{2}$ is twice the angle of elevation of the top of $T_{2}$, then the width (in m ) of the road between the feet of the towers $T_{1}$ and $T_{2}$ is

A $20 \sqrt{2}$

B $10 \sqrt{2}$

C $\quad 10 \sqrt{3}$

D $\quad 20 \sqrt{3}$

## Solution

Let the width of the road between the feet of the towers $t_{1}$ and $t_{2}$ be $w$

Let the angles be
$\angle B A C=\theta$ $\qquad$ [given]
$\Rightarrow \angle E B D=2 \theta$
Now, from the above diagram
$\tan \theta=\frac{\text { opposite } \text { side }}{\text { hypotenuse }}=\frac{B C}{A C}$
$\tan 2 \theta=\frac{D E}{E B}$
$B C=80-60=20$,
$A C=w$
$D E=B O=80$,
$E B=D O=w$
$\therefore \tan 2 \theta=\frac{E D}{E B}=\frac{80}{w}$,
$\tan \theta=\frac{B C}{A C}=\frac{20}{w}$
We know that
$\tan 2 \theta=\frac{2 \tan \theta}{1-(\tan \theta)^{2}}$
By substituting the values of $\tan \theta$ and $\tan 2 \theta$, we get
$\frac{80}{w}=\frac{2\left(\frac{20}{w}\right)}{1-\left(\frac{20}{W}\right)^{2}}$
$\frac{40}{w} \times w=80 \times\left[1-\left(\frac{20}{w}\right)^{2}\right]$
$\Rightarrow 40=80 \times\left[1-\left(\frac{20}{w}\right)^{2}\right]$
$\Rightarrow\left[1-\left(\frac{20}{w}\right)^{2}\right]=\frac{40}{80}=\frac{1}{2}$
$\Rightarrow 1-\frac{400}{w^{2}}=\frac{1}{2}$
$\Rightarrow \frac{400}{w^{2}}=\frac{1}{2}$
$\Rightarrow 800=w^{2}$
$\Rightarrow w=\sqrt{800}=20 \sqrt{2}$


Let the width of the road the road is
$d$.

If the angle of the elevation is $\theta$, then
$\tan \theta=\frac{20}{x}$, Here 20 is the height difference of $T_{1}$ and $T_{2}$.

Given that, the angle of depression is twice of the angle of elevation.
$\tan 2 \theta=\frac{60}{d}$

We know $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$\therefore \frac{60}{d}=\frac{40 / d}{1-\left(400 / d^{2}\right)}$
$\Rightarrow \frac{400}{d^{2}}=\frac{1}{3}$
$d=20 \sqrt{3}$
\#870217
If $I_{1}=\int_{0}^{1} e^{-x} \cos ^{2} x d x ; \quad I_{2}=\int_{0}^{1} e^{-x^{2}} \cos ^{2} x d x$ and $I_{3}=\int_{0}^{1} e^{-x^{3}} d x$; then

A $\quad I_{2}>I_{3}>I_{1}$
B $\quad I_{3}>I_{1}>I_{2}$
C $I_{2}>I_{1}>I_{3}$
D $I_{3}>I_{2}>I_{1}$

## Solution

Given:
$I_{1}=\int_{0}^{1} e^{-x} \cos ^{2} x d x ;$
$I_{2}=\int_{0}^{1} e^{-x^{2}} \cos ^{2} x d x$ and
$I_{3}=\int_{0}^{1} e^{-x^{3}} d x$
For $x \in(0,1), x>x^{2} \Rightarrow-x<-x^{2}$
$\Rightarrow x^{2}>x^{3}$
$\Rightarrow-x^{2}<-x^{3}$
$\Rightarrow e^{-x^{2}}<e^{-x^{3}}$
and $e^{-x}<e^{-x^{2}}$
$\Rightarrow e^{-x}<e^{-x^{2}}<e^{-x^{3}}$
$\Rightarrow e^{-x^{3}}>e^{-x^{2}}>e^{-x}$
$\Rightarrow I_{3}>I_{2}>I_{1}$
Green line denotes $f(x)=e^{-x} \cos ^{2} x$
Blue line denotes $g(x)=e^{-x^{2}} \cos ^{2} x$
Red line denotes $h(x)=e^{-x^{3}}$
Also, from the graph we get the same result.
Hence, option D is correct.


## \#870220

The sides of a rhombus $A B C D$ are parallel to the lines, $x-y+2=0$ and $7 x-y+3=0$. If the diagonals of the rhombus intersect at $P(1,2)$ and the vertex $A$ (different from the origin) is on the $y$-axis, then the ordinate of $A$ is

A 2
B $\frac{7}{4}$
C $\quad \frac{7}{2}$
D $\frac{5}{2}$

## Solution

Let the coordinate A be $(0, c)$

Equations of the parallel lines are given:
$x-y+2=0$ and
$7 x-y+3=0$
$\frac{x-y+2}{\sqrt{2}}= \pm \frac{7 x-y+3}{5 \sqrt{2}}$
$5 x-5 y+10= \pm(7 x-y+3)$

Parallel equations of the diagonals are $2 x+4 y-7=0$ and $12 x-6 y+13=0$
slopes of diagonal $m=\frac{-1}{2}$ and 2

We know that the slope of diagonal from $A(0, c)$ and passing through $P(1,2)$ is $(2-c)$
therefore $2-c=2 \Longrightarrow c=0$, but it is given that $A$ is not origin, so
$2-c=\frac{-1}{2} \Longrightarrow c=\frac{5}{2}$
$\therefore$ coordinate of A is $(0,5 / 2)$

## \#870224

$\lim _{x \rightarrow 0} \frac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^{2}}$ equals.

A 1
B $\quad-\frac{1}{2}$
C $\quad \frac{1}{4}$
D $\quad \frac{1}{2}$

## Solution

Given limit is $L=\lim _{x \rightarrow 0} \frac{(x \tan 2 x-2 x \tan x)}{(1-\cos 2 x)^{2}}$
By expanding $\tan 2 x$ and $\cos 2 x$ we get
$\frac{(x \tan 2 x-2 x \tan x)}{(1-\cos 2 x)^{2}}=\frac{x \frac{2 \tan x}{1-(\tan x)^{2}}-2 x \tan x}{\left(1-\left(1-2 \sin ^{2} x\right)\right)^{2}}$
$=\frac{2 x \tan x-\left[2 x \tan x-2 x \tan ^{3} x\right]}{4 \sin ^{4} x \times\left(1-\tan ^{2} x\right)}=\frac{2 x \tan ^{3} x}{4 \sin ^{4} x \times\left(1-\tan ^{2} x\right)}$
$=\frac{2 x \tan ^{3} x}{4 \sin ^{4} x \times\left(\frac{\cos ^{2} x-\sin ^{2} x}{\cos ^{2} x}\right)}=\frac{2 x \frac{\sin ^{3} x}{\cos ^{3} x}}{4 \sin ^{4} x \times\left(\frac{\cos ^{2} x-\sin ^{2} x}{\cos ^{2} x}\right)}$
$=\frac{x}{2 \sin x \times\left(\cos ^{2} x-\sin ^{2} x\right) \cos x}$
Now applying the limit $x \rightarrow 0$, we get
$L=\lim _{x \rightarrow 0} \frac{x}{2 \sin x} \times \lim _{x \rightarrow 0} \frac{1}{\cos x\left(\cos ^{2} x-\sin ^{2} x\right)}$
$=\lim _{x \rightarrow 0} \frac{x}{2 \sin x} \times \lim _{x \rightarrow 0} \frac{1}{\cos 0\left(\cos ^{2} 0-\sin ^{2} 0\right)}$
$=\frac{1}{2}\left[\because \lim _{x \rightarrow 0} \frac{x}{\sin x}=1\right]$
Hence, option D is correct.

Let us have
$\lim _{x \rightarrow 0} \frac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^{2}}=l$
$l=\lim _{x \rightarrow 0} \frac{x\left(\frac{2 \tan x}{1-\tan ^{2} x}\right)-2 x \tan x}{\left(1-\frac{1-\tan ^{2} x}{1+\tan ^{2} x}\right)^{2}}$
$l=\lim _{x \rightarrow 0} \frac{2 x \tan x\left(\frac{1}{1-\tan ^{2} x}-1\right)}{\left(\frac{2 \tan ^{2} x}{1+\tan ^{2} x}\right)^{2}}$
$l=\lim _{x \rightarrow 0} \frac{2 x \tan x\left(\frac{\tan ^{2} x}{1-\tan ^{2} x}\right)}{\left(\frac{2 \tan ^{2} x}{1+\tan ^{2} x}\right)^{2}}$
$l=\lim _{x \rightarrow 0} \frac{x\left(1+\tan ^{2} x\right)^{2}}{2 \tan x\left(1-\tan ^{2} x\right)}$
$l=\lim _{x \rightarrow 0} \frac{x\left(\sec ^{2} x\right)^{2} \cos x}{2 \sin x\left(1-\tan ^{2} x\right)}$

We know $\lim _{x \rightarrow 0} \frac{x}{\sin x}=1$
$\therefore l=\frac{1}{2}$
\#870229
Let $f(x)=\left\{\begin{array}{c}(x-1)^{\frac{1}{2-x}}, x>1, x \neq 2 \quad k, \\ x=2\end{array}\right.$
The value of $k$ for which $f$ is continuous at $x=2$ is

A $e^{-2}$

B $e$
C $e^{-1}$

D 1

## Solution

If
$f(x)$ is continuous at
$x=2$, then
$\lim _{x \rightarrow 2}(x-1)^{\frac{1}{2-x}}=k$

Above is $1^{\infty}$ form,
$\therefore k=e^{l}$
where $l=\lim _{x \rightarrow 2}(x-1-1) \times \frac{1}{2-x}=\lim _{x \rightarrow 2} \frac{x-2}{2-x}=-1$
$\Longrightarrow k=e^{-1}$

## \#870233

If $a, b, c$ are in A.P. and $a^{2}, b^{2}, c^{2}$ are in G.P. such that $a<b<c$ and $a+b+c=\frac{3}{4}$, then the value of $a$ is
A $\frac{1}{4}-\frac{1}{3 \sqrt{2}}$

B $\frac{1}{4}-\frac{1}{4 \sqrt{2}}$
C $\frac{1}{4}-\frac{1}{\sqrt{2}}$
D $\quad \frac{1}{4}-\frac{1}{2 \sqrt{2}}$
Solution
If
$a, b, c$ are in A.P. then
$a+c=2 b$

Given $a+b+c=\frac{3}{4}$
$2 b+b=\frac{3}{4} \Longrightarrow b=\frac{1}{4}$
$b=\frac{1}{4}$

If $a^{2}, b^{2}, c^{2}$ are in G.P. then
$\left(b^{2}\right)^{2}=a^{2} c^{2} \Longrightarrow a c= \pm \frac{1}{16}$

From (1) and (2)
$a \pm \frac{1}{16 a}=\frac{1}{2}$
$16 a^{2}-8 a \pm 1=0$

If $16 a^{2}-8 a+1=0 \Longrightarrow a=\frac{1}{4}$ but it is not true; because $a<b$
If $16 a^{2}-8 a-1=0 \Longrightarrow a=\frac{8 \pm \sqrt{128}}{32}$
$\Longrightarrow a=\frac{1}{4} \pm \frac{1}{2 \sqrt{2}}$

But it is given, that $a<b$
$\therefore a=\frac{1}{4}-\frac{1}{2 \sqrt{2}}$

## \#870237

Tangents drawn from the point $(-8,0)$ to the parabola $y^{2}=8 x$ touch the parabola at $P$ and $Q$. If $F$ is the focus of the parabola, then the area of the triangle $P F Q$ (in sq. units) is equal to

D $\quad 64$

## Solution

Equation of the chord of contact $P Q$ is given by
$T=0$
$T \equiv 4\left(x+x_{1}\right)-y y_{1}=0$, where $\left(x_{1}, y_{1}\right) \equiv(-8,0)$
$\therefore$ chord of contact is $x=8$

Coordinates of point P and Q are $(8,8)$ and $(8,-8)$

Focus of the parabola is $F(2,0)$

Area of triangle $P Q F=\frac{1}{2} \times(8-2) \times(8+8)=48$ sq. units

