## \#1328982

Two plane mirrors are inclined to each other such that a ray of light incident on the first mirror $\left(M_{1}\right)$ and parallel to the second mirror $\left(M_{2}\right)$ is finally reflected from the second mirror $\left(M_{2}\right)$ parallel to the first mirror $\left(M_{1}\right)$. The angle between the two mirrors will be :

A $90^{\circ}$

B $\quad 45^{\circ}$

C $75^{\circ}$
D $60^{\circ}$

Solution

Assuming angles between two mirrors be $\theta$ as per geometry,
sum of angles of $\Delta$
$\lambda 1+\lambda 2=360-20=180+\theta$
$3 \theta=180^{\circ}$
$\theta=60^{\circ}$


## \#1329045

In a Young's double slit experiment, the slits are placed 0.320 mm apart. Light of wavelength $\lambda=500 \mathrm{~nm}$ is incident on the slits. The total number of bright fringes that are observed in the angular range $-30^{\circ} \leq \theta \leq 30^{\circ}$ is :

A 320
B 641

C $\quad 321$

D 640
Solution

Pam difference
$d \sin \theta=n \lambda$
where $d=$ seperation of slits
$\lambda=$ wave length
$\mathrm{n}=$ no. of maximas
$0.32 \times 10^{-3} \sin 30=n \times 500 \times 10^{-9}$
$n=320$
Hence total no. of maximas observed in angular range $-30^{\circ} \leq \theta \leq 30^{\circ}$ is
maximas $=320+1+320=641$


## \#1329172

At a given instant, say $\mathrm{t}=0$, two radioactive substances A and B have equal activities. The ratio $\frac{R_{B}}{R_{A}}$ of their activities after time t itself decays with time t as $e^{-3 t}$. [f the half-life of $A$ is $m_{2}$, the half-life of $B$ is:

A $\frac{\ln 2}{2}$
B $\quad 2 \ln 2$
C $\frac{\ln 2}{4}$
D $\quad 4 \ln 2$

## Solution

Half life of $A=\ln 2$
$t_{1 / 2}=\frac{\ell n 2}{\lambda}$
$\lambda_{A}=1$
at $t=0 R_{A}=R_{B}$
$N_{A} e^{-\lambda A T}=N_{B} e^{-\lambda B T}$
$N_{A}=N_{B}$ at $\mathrm{t}=0$
at $\mathrm{t}=\mathrm{t} \frac{R_{B}}{R_{A}}=\frac{N_{0} e^{-\lambda_{B}^{t}}}{N_{0} e^{-\lambda_{A}^{t}}}$
$e^{-\left(\lambda_{B}-\lambda_{A}\right) t}=e^{-t}$
$\lambda_{B}-\lambda_{A}=3$
$\lambda_{B}=3+\lambda_{A}=4$
$t_{1 / 2}=\frac{\ln 2}{\lambda_{B}}=\frac{\ell n 2}{4}$


Ge and Si diodes start conducting at 0.3 V and 0.7 V respectively. In the following figure if Ge diode connection are reversed, the value of $V_{o}$ changes by : (assume that the Ge diode has large breakdown voltage)

A 0.6 v
B $\quad 0.8 \mathrm{~V}$
C 0.4 V
D $\quad 0.2 \mathrm{~V}$

## Solution

For shown case
$V o=12-0.3=11.7$
In the second case
$V o=12-0.7=11.3$
So difference $=11.7-11.3$
$=0.4 \mathrm{~V}$ is observed.

## \#1329288

A rod of mass ' $M$ ' and length ' $2 L$ ' is suspended at its middle by a wire. It exhibits torsional oscillations; If two masses each of 'm' are
attached at distance ${ }^{\prime} L / 2^{\prime}$ from its centre on both sides, it reduces the oscillation frequency by $20 \%$. The value of ratio $\mathrm{m} / \mathrm{M}$ is close to :

A 0.175

B $\quad 0.375$
C $\quad 0.575$

D 0.775

## Solution

Frequency of torsonal oscillations is given by
$f=\frac{k}{\sqrt{\bar{I}}}$
$f_{1}=\frac{k}{\sqrt{\frac{M(2 L)^{2}}{12}}}$
$f_{2}=\frac{k}{\sqrt{\frac{M(2 L)^{2}}{12}+2 m\left(\frac{L}{2}\right)^{2}}}$
$f_{2}=0.8 f_{1}$
$\frac{m}{M}=0.375$

## \#1329316

A 15 g mass of nitrogen gas is enclosed in a vessel at a temperature $27^{\circ} \mathrm{C}$. Amount of heat transferred to the gas, so that rms velocity of molecules is doubled, is about :

A 10 kJ
B $\quad 0.9 \mathrm{~kJ}$
C $\quad 6 \mathrm{~kJ}$

## Solution

$Q=n C_{v} \Delta T$ as gas in closed vessel
$Q=\frac{15}{28} \times \frac{5 \times R}{2} \times(4 T-T)$
$Q=10000 J=10 k J$

## \#1329346

A particle is executing simple harmonic motion (SHM) of amplitude A, along the $x$-axis, about $x=0$. When its potential Energy (PE) equals kinetic energy (KE), the position of the particle will be

A $\frac{A}{2}$
B $\frac{A}{2 \sqrt{2}}$
C $\frac{A}{\sqrt{2}}$
D $\quad A$
Solution
Potential energy $(U)=\frac{1}{2} k x^{2}$
Kinetic energy $(K)=\frac{1}{2} k A^{2}-\frac{1}{2} k x^{2}$
According to the question, $U=k$
$\therefore \frac{1}{2} k x^{2}=\frac{1}{2} k A^{2}-\frac{1}{2} k x^{2}$
$x= \pm \frac{A}{\sqrt{2}}$

## \#1329397

A musician using an open flute of length 50 cm produces second harmonic sound waves. A person runs towards the musician from another end of a hall at a speed of $10 \mathrm{~km} / \mathrm{h}$. If the wave speed is $330 \mathrm{~m} / \mathrm{s}$, the frequency heard by the running person shall be close to :

A $\quad 753 \mathrm{~Hz}$

B $\quad 500 \mathrm{~Hz}$

C $\quad 333 \mathrm{~Hz}$
D $\quad 666 \mathrm{~Hz}$
Solution
Frequency of the sound produced by flute,
$f=2\left(\frac{v}{2 \ell}\right)=\frac{2 \times 330}{2 \times 0.5}=660 \mathrm{~Hz}$
Velocity of observer, $v_{0}=10 \times \frac{5}{18}=\frac{25}{9} \mathrm{~m} / \mathrm{s}$
$\therefore$ frequency detected by observer, $f^{\prime}=\left[\frac{v+v_{0}}{v}\right] f$
$\therefore f^{\prime}=\left[\frac{\frac{25}{9}+330}{330}\right] 660$
$=335.56 \times 2 \approx 666$
$\therefore$ closest answer is (4)

## \#1329444

A $\quad 3.75 \times 10^{6}$
B $\quad 4.87 \times 10^{5}$

C $\quad 3.86 \times 10^{6}$
D $\quad 6.25 \times 10^{5}$
Solution
$f=\frac{3 \times 10^{8}}{8 \times 10^{-7}}=\frac{30}{8} \times 10^{14} \mathrm{~Hz}$
$=3.75 \times 10^{14} \mathrm{~Hz}$
$1 \%$ of $f=0.0375 \times 10^{14} \mathrm{~Hz}$
$=3.75 \times 10^{12} \mathrm{~Hz}=3.75 \times 10^{6} \mathrm{MHz}$
number of channels $=\frac{3.75 \times 10^{6}}{6}=6.25 \times 10^{5}$
$\therefore$ correct answer is (4)

## \#1329785

Two point charges $q_{1}(\sqrt{10} \mu C)$ and $q_{2}(-25 \mu C)$ are placed on the x -axis at $\mathrm{x}=1 \mathrm{~m}$ and $\mathrm{x}=4 \mathrm{~m}$ respectively. The electric field (in $\left.\mathrm{V} / \mathrm{m}\right)$ at a point $\mathrm{y}=3 \mathrm{~m}$ on y -axis is, $\left[\right.$ take $\left.\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} N,{ }^{2} C^{-2}\right]$

A $(-63 \hat{i}+27 \hat{j}) \times 10^{2}$
B $\quad(81 \hat{i}-81 \hat{j}) \times 10^{2}$
C $(63 \hat{i}-27 \hat{j}) \times 10^{2}$
D $(-81 \hat{i}+81 \hat{j}) \times 10^{2}$
Solution

Let $\overrightarrow{E_{1}} \& \overrightarrow{E_{2}}$ are the values of electric field due to $q_{1}$ and $q_{2}$ respectively magnitude of $E_{2}=\frac{1}{4 \pi \in_{0}} \frac{q_{2}}{r^{2}}$
$E_{2}=\frac{9 \times 10^{9} \times(25) \times 10^{-6}}{\left(4^{2}+3^{2}\right)} V / m$
$E_{2}=9 \times 10^{3} \mathrm{~V} / \mathrm{m}$
$\therefore \overrightarrow{E_{2}}=9 \times 10^{3}\left(\cos \theta_{2} \hat{i}-\sin \theta_{2} \hat{j}\right)$
$\therefore \tan \theta_{2}=\frac{3}{4}$
$\therefore \overrightarrow{E_{2}}=9 \times 20^{3}\left(\frac{4}{5} \hat{i}-\frac{3}{5} \hat{j}\right)=(72 \hat{i}-54 \hat{j}) \times 10^{2}$
Magnitude of $E_{1}=\frac{1}{4 \pi \in_{0}} \frac{\sqrt{10} \times 10^{-6}}{\left(1^{2}+3^{2}\right)}$
$=\left(9 \times 10^{9}\right) \times \sqrt{10} \times 10^{-7}$
$=9 \sqrt{10} \times 10^{2}$
$\therefore \overrightarrow{E_{1}}=9 \sqrt{10} \times 10^{2}\left[\cos \theta_{1}(-\hat{i})+\sin \theta_{1} \hat{j}\right]$
$\therefore \tan \theta_{1}=3$
$E_{1}=9 \times \sqrt{10} \times 10^{2}\left[\frac{1}{\sqrt{10}}(-\hat{i})+\frac{3}{\sqrt{10}} \hat{j}\right]$
$E_{1}=9 \times 10^{2}[-\hat{i}+3 \hat{j}]=[-9 \hat{i}+27 \hat{j}] 10^{2}$
therefore $\vec{E}=\overrightarrow{E_{1}}+\overrightarrow{E_{2}}=(63 \hat{i}-27 \hat{j}) \times 10^{2} V / m$
$\therefore$ correct answer is (3)


\#1329943


A parallel plate capacitor with square plates is filled with four dielectrics of dielectric constants $K_{1}, K_{2}, K_{3}, K_{4}$ arranged as shown in the figure. The effective dielectric constant $K$ will be :

A

$$
K=\frac{\left(K_{1}+K_{2}\right)\left(K_{3}+K_{4}\right)}{2\left(K_{1}+K_{2}+K_{3}+K_{4}\right)}
$$

B

$$
K=\frac{\left(K_{1}+K_{2}\right)\left(K_{3}+K_{4}\right)}{\left(K_{1}+K_{2}+K_{3}+K_{4}\right)}
$$

C

$$
K=\frac{\left(K_{1}+K_{4}\right)\left(K_{2}+K_{3}\right)}{2\left(K_{1}+K_{2}+K_{3}+K_{4}\right)}
$$

$$
\mathrm{D} \quad K=\frac{\left(K_{1}+K_{3}\right)\left(K_{2}+K_{4}\right)}{K_{1}+K_{2}+K_{3}+K_{4}}
$$

## Solution

$C_{12}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}=\frac{\frac{k_{1} \in_{0} \frac{L}{2} \times L}{d / 2} \cdot \frac{k_{2}\left[\epsilon_{0} \frac{L}{2} \times L\right]}{d / 2}}{\left(k_{1}+K_{2}\right)\left[\frac{\epsilon_{0} \cdot \frac{L}{2} \times L}{d / 2}\right]}$
$C_{12}=\frac{k_{1} k_{2}}{k_{1}+k_{2}} \frac{\in_{0} L^{2}}{d}$
in the same way we get, $C_{34}=\frac{k_{3} k_{4}}{k_{3}+k_{4}} \frac{\in_{0} L^{2}}{d}$
$\therefore C_{e q}=C_{12}+C_{34}=\left[\frac{k_{1} k_{2}}{k_{1}+k_{2}}+\frac{k_{3} k_{4}}{k_{3}+k_{4}}\right] \frac{\in_{0} L^{2}}{d}$
Now if $k_{e q}-k, C_{e q}=\frac{k \in_{0} L^{2}}{d}$
on comparing equation (i) to equation (ii), we get
$k_{e q}=\frac{k_{1} k_{2}\left(k_{3}+k_{4}\right)+k_{3} K_{4}\left(k_{1}+k_{2}\right)}{\left(k_{1}+k_{2}\right)\left(k_{3}+k_{4}\right)}$
This does not match with any of the options so probably they have assumed the wrong combination
$C_{13}=\frac{k_{1} \in_{0} L \frac{L}{2}}{d / 2}+k_{3} \in_{0} \frac{L \cdot \frac{L}{2}}{d / 2}$
$=\left(k_{1}+k_{3}\right) \frac{\in_{0} L^{2}}{d}$
$C_{24}=\left(k_{2}+k_{4}\right) \frac{\epsilon_{0} L^{2}}{d}$
$C_{e q}=\frac{C_{13} C_{24}}{C_{13} C_{24}}=\frac{\left(K_{1}+K_{3}\right)\left(k_{2}+k_{4}\right)}{\left(k_{1}+k_{2}+k_{3}+k_{4}\right)} \frac{\in_{0} L^{2}}{d}$
$=\frac{k \in_{0} L^{2}}{d}$
$k=\frac{\left(k_{1}+k_{3}\right)\left(k_{2}+k_{4}\right)}{\left(k_{1}+k_{2}+k_{3}+k_{4}\right)}$


## \#1329987



A rod of length 50 cm is pivoted at one end. It is raised such that if makes an angle of $30^{\circ}$ from the horizontal as shown and released from rest. Its angular speed when it passes through the horizontal (in rad $s^{-1}$ ) will be ( $g=10 \mathrm{~ms}^{-2}$ )

A $\sqrt{30}$
B $\sqrt{\frac{30}{2}}$
C $\frac{\sqrt{30}}{2}$
D $\frac{\sqrt{20}}{3}$

## Solution

Work done by gravity from initial to final
position is,
$W=m g \frac{\ell}{2} \sin 30^{\circ}$
$=\frac{m g \ell}{4}$
According to work energy theorem
$W=\frac{1}{2} I \omega^{2}$
$\Rightarrow \frac{1}{2} \frac{m \ell^{2}}{3} \omega^{2}=\frac{m g \ell}{4}$
$\omega=\sqrt{\frac{\overline{3 g}}{2 \ell}}=\sqrt{\frac{3 \times 10}{2 \times 0.5}}$
$\omega=\sqrt{30} \mathrm{rad} / \mathrm{sec}$
$\therefore$ correct answer is (1)

final position

## \#1330023

One of the two identical conducting wires of length $L$ is bent in the form of a circular loop and the other one into a circular coil of $N$ identical turns. If the same current is passed in both, the ratio of the magnetic field at the central of the loop $\left(B_{L}\right)$ to that at the centre of the coil $\left(B_{C}\right)$, i.e. R $\frac{B_{L}}{B_{C}}$ will be

A $\frac{1}{N}$
B $\quad N^{2}$
C $\frac{1}{N^{2}}$
D $\quad N$

## Solution

$L=2 \pi R \quad L=N \times 2 \pi r$
$R=N r$
$B_{L}=\frac{\mu_{0} i}{2 R} \quad B_{C}=\frac{\mu_{0} N i}{2 r}$
$B_{C}=\frac{\mu_{0} N^{2} i}{2 R}$
$\frac{B_{L}}{B_{C}}=\frac{1}{N^{2}}$


## \#1330108

The energy required to take a satellite to a height ' $h$ ' above Earth surface (radius of Earth $=6.4 \times 10^{3} \mathrm{~km}$ ) is $E_{1}$ and kinetic energy required for the satellite to be in a circular orbit at this height is $E_{2}$. The value of h for which $E_{1}$ and $E_{2}$ are equal, is:

A $\quad 1.28 \times 10^{4} \mathrm{~km}$
B $\quad 6.4 \times 10^{3} \mathrm{~km}$

D $\quad 1.6 \times 10^{3} \mathrm{~km}$

## Solution

$U_{\text {surface }}+E_{1}=U_{h}$
KE of satelite is zero at earth surface \& at height h
$-\frac{G M_{e} m}{R_{e}}+E_{1}=-\frac{G M_{e} m}{(R e+h)}$
$E_{1}=G M_{e} m\left(\frac{1}{R_{e}}-\frac{1}{R_{e}+h}\right)$
$E_{1}=\frac{G M_{e} m}{\left(R_{e}+h\right)} \times \frac{h}{R_{e}}$
Gravitational attraction $F_{G}=m a_{C}=\frac{m v^{2}}{\left(R_{e}+h\right)}$
$E_{2} \Rightarrow \frac{m v^{2}}{\left(R_{e}+h\right)}=\frac{G M_{e} m}{\left(R_{e}+h\right)^{2}}$
$m v^{2}=\frac{G M_{e} m}{\left(R_{e}+h\right)}$
$E_{2}=\frac{m v^{2}}{2}=\frac{G M_{e} m}{2\left(R_{e}+h\right)}$
$E_{1}=E_{2}$
$\frac{h}{R_{e}}=\frac{1}{2} \Rightarrow h=\frac{R_{e}}{2}=3200 \mathrm{~km}$

## \#1330191

The energy associate with electric field is $\left(U_{E}\right)$ and with magnetic field is $\left(U_{B}\right)$ for an electromagetic wave in free space. Then:

A $\quad U_{E}=\frac{U_{B}}{2}$
B $\quad U_{E}<U_{B}$

C $\quad U_{E}=U_{B}$
D $\quad U_{E}>U_{B}$

## Solution

Average energy density of magnetic field, $u_{B}=\frac{B_{0}^{2}}{2 \mu_{0}}, B_{0}$ is maximum value of magnetic
field.
Average energy density of electric field,
Average energy density of electric field,
$u_{E}=\frac{\varepsilon_{0} \in_{0}^{2}}{2}$
now, $\epsilon_{0}=C B_{0}, C^{2}=\frac{1}{\mu_{0} \in_{0}}$
$\mu_{E}=\frac{\epsilon_{0}}{2} \times C^{2} B_{0}^{2}$
$=\frac{\epsilon_{0}}{2} \times \frac{1}{\mu_{0} \epsilon_{0}} \times B_{0}^{2}=\frac{B_{0}^{2}}{2 \mu_{0}}=\mu_{B}$
$u_{E}=u_{B}$
since energy density of electric \& magnetic
field is same, energy associated with equal
volume will be equal.
$u_{E}=u_{B}$

## \#1330308

A series AC circuit containing an inductor ( 20 mH ), a capacitor $(120 \mu F)$ and a resistor ( $60 \Omega$ ) is driven by an AC source of $24 \mathrm{~V} / 50 \mathrm{~Hz}$. The energy dissipated in the circuit in 60 s is:

Solution
$R=60 \Omega \quad \mathrm{f}=50 \mathrm{~Hz}, \omega=2 \pi f=100 \pi$
$x_{C}=\frac{1}{\omega C}=\frac{1}{100 \pi \times 120 \times 10^{-6}}$
$x_{C}=26.52 \Omega$
$x_{L}=\omega L=100 \pi \times 20 \times 10^{-3}=2 \pi \Omega$
$x_{C}-x_{L}=20.24 \approx 20$
$z=\sqrt{R^{2}+\left(x_{C}-x_{L}\right)^{2}}$
$z=20 \sqrt{10} \Omega$
$\cos \phi=\frac{R}{z}=\frac{3}{\sqrt{10}}$
$P_{\text {avg }}=V I \cos \phi, I=\frac{v}{z}$
$=\frac{v^{2}}{z} \cos \phi$
$=8.64 \mathrm{watt}$
$Q=P . t=8.64 \times 60=5.18 \times 10^{2}$


## \#1330440

Expression for time in terms of G (universal gravitational constant), h (Planck constant) and c (speed of light) is proportional to :

A $\sqrt{\frac{G h}{c^{3}}}$
B $\sqrt{\frac{h c^{5}}{G}}$
C
$\sqrt{\frac{c^{3}}{G h}}$
D $\sqrt{\frac{G h}{c^{5}}}$

## Solution

$F=\frac{G M^{2}}{R^{2}} \Rightarrow G=\left[M^{-1} L^{3} T^{-2}\right]$
$E=h v \Rightarrow h=\left[M L^{2} T^{-1}\right]$
$C=\left[L T^{-1}\right]$
$t \propto G^{x} h^{y} C^{z}$
$[T]=\left[M^{-1} L^{3} T^{-2}\right]^{x}\left[M L^{2} T^{-1}\right]^{y}\left[L T^{-1}\right]^{z}$
$\left[M^{0} L^{0} T^{1}\right]=\left[M^{-x+y} L^{3 x+2 y+z} T^{-2 x-y-z}\right]$
on comparing the powers of $\mathrm{M}, \mathrm{L}, \mathrm{T}$
$-x+y=0 \Rightarrow x=y$
$3 x+2 y+z=0 \Rightarrow 5 x+z=0$
$-2 x-y-z=1 \Rightarrow 3 x+z=-1$
on solving (i) and (ii) $x=y=\frac{1}{2}, z=-\frac{5}{2}$
$t \propto \sqrt{\frac{G h}{C^{5}}}$

## \#1330602

The magnetic field associated with a light wave is given, at the origin, by $B=B_{0}\left[\sin \left(3.14 \times 10^{7}\right) c t+\sin \left(6.28 \times 10^{7}\right) c t\right]$. If this light falls on a silver plate having a work
function of 4.7 eV , what will be the maximum kinetic energy of the photo electrons?
$\left(c=3 \times 10^{8} \mathrm{~ms}^{-1} . h=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)$

A $\quad 7.72 \mathrm{eV}$
B $\quad 8.52 \mathrm{eV}$
C $\quad 12.5 \mathrm{eV}$
D $\quad 6.82 \mathrm{eV}$

## Solution

$B=B_{0} \sin \left(\pi \times 10^{7} C\right) t+B_{0} \sin \left(2 \pi \times 10^{7} C\right) t$
since there are two EM waves with different
frequency, to get maximum kinetic energy we
take the photon with higher frequency
$B_{1}=B_{0} \sin \left(\pi \times 10^{7} C\right) t v_{1}=\frac{10^{7}}{2} C$
$B_{2}=B_{0} \sin \left(2 \pi \times 10^{7} C\right) t v_{2}=10^{7} C$
Where C is speed of light $C=3 \times 10^{8} \mathrm{~m} / \mathrm{s} v_{2}>v_{1}$
so KE of photoelectron will be maximum for photon of higher energy.
$v_{2}=10^{7} \mathrm{CHz}$
$h v=\phi+K E_{\max }$
energy of photon
$E_{p h}=h v=6.6 \times 10^{-34} \times 10^{7} \times 3 \times 10^{9}$
$e_{p h}=6.6 \times 3 \times 10^{-19} J$
$=\frac{6.6 \times 3 \times 10^{-19}}{1.6 \times 10^{-19}} \mathrm{eV}=12.375 \mathrm{eV}$
$K E_{\text {max }}=E_{p h}-\phi$
$=12.375-4.7=7.675 \mathrm{eV} \approx 7.72 \mathrm{eV}$

## \#1330776

Charge is distributed within a sphere of radius R with a volume charge density $\rho(r)=\frac{A}{r^{2}} e^{-2 r / a}$, where A and a are constants. If Q is the total charge of this charge distribution, the radius R is :

A $\quad \frac{a}{2} \log \left(1-\frac{Q}{2 \pi a A}\right)$

B

$$
\operatorname{alog}\left(1-\frac{Q}{2 \pi a A}\right)
$$

C

$$
\operatorname{alog}\left(\frac{1}{1-\frac{Q}{2 \pi a A}}\right)
$$

D $\quad \frac{a}{2} \log \left(\frac{1}{1-\frac{Q}{2 \pi a A}}\right)$

## Solution

$Q=\int \rho d v$
$=\int_{0}^{R} \frac{A}{r^{2}} e^{-2 r / a}\left(4 \pi r^{2} d x\right)$
$4 \pi A \int_{0}^{R} e^{-2 r / a} d x$
$=4 \pi A\left(\frac{e^{-2 r / a}}{-\frac{2}{a}}\right)$
$=4 \pi A\left(-\frac{a}{2}\right)\left(e^{-2 R / a}-1\right)$
$Q=2 \pi a A\left(1-e^{-2 R / a}\right)$
$R=\frac{a}{2} \log \left(\frac{1}{1-\frac{Q}{2 \pi a A}}\right)$

\#1330823
Two Carrnot engines $A$ and $B$ are operated in series. The first one, $A$, receives heat at $T_{1}(=600 \mathrm{~K})$ and rejects to a reservoir at temperature $T_{2}$. The second engine $B$ receives heat rejected by the first engine and, in turn, rejects to a heat reservoir at $T_{3}(=400 \mathrm{~K})$. Calculate the temperature $T_{2}$ if the work outputs of the two engines are equal :

A $\quad 400 \mathrm{~K}$
B $\quad 600 \mathrm{~K}$
C $\quad 500 \mathrm{~K}$
D 300 K

Solution
$w_{1}=w_{2}$
$\Delta u_{1}=\Delta u_{2}$
$T_{3}-T_{2}=T_{2}-T_{1}$
$2 T_{2}=T_{1}+T_{3}$
$T_{2}=500 K$


A carbon resistance has a following colour code. What is the value of the resistance?

A $\quad 1.64 M \Omega \pm 5 \%$
B $\quad 530 k \Omega \pm 5 \%$

C $\quad 64 k \Omega \pm 10 \%$

D $\quad 5.3 M \Omega \pm 5 \%$

## Solution

$R=53 \times 10^{4} \pm 5 \%=530 k \Omega \pm 5 \%$


## \#1330902

A force acts on a 2 kg object so that its position is given as a function of time as $x=3 t^{2}+5$. What is the work done by this force in first 5 seconds ?

A 850 J

B 900 J

C 950 J

D 875 J

## Solution

$x=3 t^{2}+5$
$v=\frac{d x}{d t}$
$v=6 t+0$
at $t=0 \quad v=0$
$t=5 \mathrm{sec} \quad v=30 \mathrm{~m} / \mathrm{s}$
W.D. $=\Delta K E$
$W . D .=\frac{1}{2} m v^{2}-0=\frac{1}{2}(2)(30)^{2}=900 J$

## \#1330948

The position co-ordinates of a particle moving in a 3-D coordinate system is given by
$x=a \cos \omega t$
$y=a \sin \omega t$
and $z=a \omega t$
The speed of the particle is :

A $a \omega$

B $\sqrt{3} a \omega$
C $\sqrt{2} a \omega$
D $\quad 2 a \omega$

## Solution

$v_{x}=-a \omega \sin \omega t \Rightarrow v_{y}=a \omega \cos \omega t$
$v_{z}=a \omega$

$$
\Rightarrow v=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}
$$

$v=\sqrt{2} a \omega$

## \#1331011



In the given circuit the internal resistance of the 18 V cell is negligible. If $R_{1}=400 \Omega, R_{3}=100 \Omega$ and $R_{4}=500 \Omega$ and the reading of an ideal voltmeter across $R_{4}$ is 5 V , then the value $R_{2}$ will be :

B $230 \Omega$
C $450 \Omega$
D $550 \Omega$

## Solution

$V_{4}=5 \mathrm{~V}$
$i_{1}=\frac{V_{4}}{R_{4}}=0.01 \mathrm{~A}$
$V_{3}=i_{1} R_{3}=1 \mathrm{~V}$
$V_{3}+V_{4}=6 V=V_{2}$
$V_{1}+V_{3}+V_{4}=18 \mathrm{~V}$
$V_{1}=12 \mathrm{~V}$
$i=\frac{V_{1}}{R_{1}}=0.03 \mathrm{Amp}$
$i_{2}=0.02 \mathrm{Amp}$
$R_{2}=\frac{V_{2}}{i_{2}}=\frac{6}{0.02}=300 \Omega$


## \#1331032

A mass of 10 kg is suspended vertically by a rope from the roof. When a horizontal force is applied on the rope at some point, the rope deviated at an angle of $45^{\circ}$ at the roof point. If the suspended mass is at equilibrium, the magnitude of the force applied is ( $g=10 \mathrm{~ms}^{2}$ )

A 200 N
B $\quad 100 \mathrm{~N}$
C $\quad 140 \mathrm{~N}$
D $\quad 70 \mathrm{~N}$

## Solution

at equation
$\tan 45^{\circ}=\frac{100}{F}$
$F=100 N$
עוחעוחו


100N

## \#1331133

In a car race on straight road, car A takes a times t less than car B at the finish and passes finishing point with a speed 'v' more than that of car B. Both the car start from rest and travel with constant acceleration $a_{1}$ and $a_{2}$ respectively. Then ' $v$ ' is equal to

A $\frac{a_{1}+a_{2}}{2} t$
B $\sqrt{2 a_{1} a_{2} t}$
C $\frac{2 a_{1} a_{2}}{a_{1}+a_{2}} t$
D

$$
\sqrt{a_{1} a_{2} t}
$$

For $A \& B$ let time taken by $A$ is $t_{0}$
from ques
$v_{A}-V_{B}=v=\left(a_{1}-a_{2}\right) t_{0}-a_{2} t$
$x_{B}=x_{A}=\frac{1}{2} a_{1} t_{0}^{2}=\frac{1}{2} a_{2}\left(t_{0}+t\right)^{2}$
$\Rightarrow \sqrt{a_{1} t_{0}}=\sqrt{a_{2}}\left(t_{0}+t\right)$
$\Rightarrow\left(\sqrt{a_{2}}-\sqrt{a_{2}}\right) t_{0}=\sqrt{a_{2}} t$
putting $t_{0}$ in equation
$v=\left(a_{1}-a_{2}\right) \frac{\sqrt{a_{2}} t}{\sqrt{a_{1}}-\sqrt{a_{2}}}-a_{2} t$
$=\left(\sqrt{a_{1}}+\sqrt{a_{2}}\right) \sqrt{a_{2}} t-a_{2} t \Rightarrow v=\sqrt{a_{1} a_{2} t}$
$\Rightarrow \sqrt{a_{1} a_{2}} t+a_{2} t-a_{2} t$

$\mathbf{u}=\mathbf{0}$
$V_{A}=a_{1} t_{0}$
$V_{B}=a_{2}\left(t_{0}+t\right)$

## \#1331155

A power transmission line feeds input power t 2300 V to a step-down transformer with its primary windings having 4000 turns. The output power is delivered at 230 V by the transformer. If the current in the primary of the transformer is 5 A and its efficiency is $90 \%$, the output current would be :

A $\quad 25 \mathrm{~A}$

B $\quad 50 \mathrm{~A}$

C
35 A
D $\quad 45 \mathrm{~A}$

## Solution

$\eta=\frac{P_{\text {out }}}{P_{\text {in }}}=\frac{V_{s} I_{s}}{V_{p} I_{p}}$
$\Rightarrow 0.9=\frac{23 \times I_{s}}{230 \times 5}$
$\Rightarrow I_{s}=45 \mathrm{~A}$

## \#1331211

The top of a water tank is open to air and its water level is maintained. It is giving out $0.74 \mathrm{~m}^{3}$ water per minute through a circular opening of 2 cm radius in its wall. The depth of the centre of the opening from the level of water in the tank is close to :

A $\quad 9.6 \mathrm{~m}$

B $\quad 4.8 \mathrm{~m}$

C $\quad 2.9 \mathrm{~m}$

D $\quad 6.0 \mathrm{~m}$
Solution

In flow volume = outflow volume
$\Rightarrow \frac{0.74}{60}=\left(\pi \times 4 \times 10^{-4}\right) \times \sqrt{2 g h}$
$\Rightarrow \sqrt{2 g h}=\frac{74 \times 100}{240 \pi}$
$\Rightarrow \sqrt{2 g h}=\frac{740}{24 \pi}$
$\Rightarrow 2 g h=\frac{740 \times 740}{24 \times 24 \times 10}\left(\pi^{2}=10\right)$
$\Rightarrow h=\frac{74 \times 74}{2 \times 24 \times 24}$
$\Rightarrow h \approx 4.8 \mathrm{~m}$

## \#1331247

The pitch and the number of divisions, on the circular scale, for a given screw gauge are 0.5 mm and 100 respectively. When the screw gauge is fully tightened without any object, the zero of its circular scale lies 3 divisions below the mean line. The readings of the main scale and the circular scale, for a thin sheet, are 5.5 mm and 48 respectively, the thickness of this sheet is :

A $\quad 5.755 \mathrm{~m}$
B $\quad 5.725 \mathrm{~mm}$

C $\quad 5.740 \mathrm{~m}$

D $\quad 5.950 \mathrm{~mm}$

## Solution

$$
\begin{aligned}
& L C=\frac{\text { Pitch }}{\text { No.ofdivision }} \\
& L C=0.5 \times 10^{-2} \mathrm{~mm} \\
& \text { +ve error }=3 \times 0.5 \times 10^{-2} \mathrm{~mm} \\
& =1.5 \times 10^{-2} \mathrm{~mm}=0.015 \mathrm{~mm} \\
& \text { Reading }=\text { MSR }+ \text { CSR }- \text { (+ve error) } \\
& =5.5 \mathrm{~mm}+\left(48 \times 0.5 \times 10^{-2}\right)-0.015 \\
& =5.5+0.24-0.015=5.725 \mathrm{~mm}
\end{aligned}
$$

## \#1331311

A particle having the same charge as of electron moves in a circular path of radius 0.5 cm under the influence of a magnetic field of 0.5 T . If an electric field of $100 \mathrm{~V} / \mathrm{m}$ makes it move in a straight path, then the mass of the particle is $\qquad$ ?
(Given charge of electron $=1.6 \times 10^{-19} \mathrm{C}$ )

A $2.0 \times 10^{-24} \mathrm{~kg}$
B $\quad 1.6 \times 10^{-19} \mathrm{~kg}$
C $\quad 1.6 \times 10^{-27} \mathrm{~kg}$
D $\quad 9.1 \times 10^{-31} \mathrm{~kg}$

## Solution

$$
\begin{aligned}
& \frac{m v^{2}}{R}=q v B \\
& m v=q B R \\
& \text { Path is straight line } \\
& \text { it } \mathrm{qE}=\mathrm{qvB} \\
& \mathrm{E}=\mathrm{vB} \\
& \text { From equation (i) \& (ii) } \\
& m=\frac{q B^{2} R}{E} \\
& m=2.0 \times 10^{-24} \mathrm{~kg}
\end{aligned}
$$

## \#1329159

Good reducing nature of $\mathrm{H}_{3} \mathrm{PO}_{2}$ tributed to the presence of:

A one $\mathrm{P}-\mathrm{OH}$ bonds

B one $P$ - $H$ bonds

C two $P-H$ bonds
D two $\mathrm{P}-\mathrm{OH}$ bonds

## Solution

$\mathrm{H}_{3} \mathrm{PO}_{2}$ is good reducing agent due to presence of two $P-H$ bonds


## \#1329198

The complex that has the highest crystal splitting energy $(\Delta)$, is:

A $K_{3}\left[\mathrm{Co}\left(\mathrm{CN}_{6}\right]\right.$
B $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}_{3}$
C $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}_{3}$

D $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl} \mathrm{Cl}_{2}\right.$
Solution
As complex $K_{3}\left[\mathrm{Co}\left(\mathrm{CN}_{6}\right]\right.$ have $\mathrm{CN}^{-}$ligand which is strongfield ligand amongst the given ligand in other complexes.

## \#1329213

The metal that forms nitride by reacting directly with $N_{2}$ of air,is:

A $K$
B $\quad C s$

C Li

D $\quad R b$
Solution
Only Li react directly with $N_{2}$ out of alkali metals
$6 \mathrm{Li}+\mathrm{N}_{2} \rightarrow 2 \mathrm{Li}_{3} \mathrm{~N}$

## \#1329263

In which of the following processes the bond order has increased and paramagnetic character has charged to diamagnetic?

A
$N_{2} \rightarrow N_{2}^{+}$
B
$\mathrm{NO} \rightarrow \mathrm{NO}^{+}$
C $\quad \mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{2-}$

D $\quad \mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{+}$

## Solution

| Process | Change in magnetic nature | Bond order change |
| :--- | :--- | :--- |
| $\mathrm{N}_{2} \rightarrow \mathrm{~N}_{2}^{+}$ | Dia $\rightarrow$ para | $3 \rightarrow 2.5$ |
| $\mathrm{NO} \rightarrow \mathrm{NO}^{+}$ | Para $\rightarrow$ Dia | $2.5 \rightarrow 3$ |
| $\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{-2}$ | Para $\rightarrow$ Dia | $2 \rightarrow 1$ |
| $\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{+}$ | Para $\rightarrow$ Para | $2 \rightarrow 2.5$ |



The major product of the following reaction is:

A


B

c


D


## Solution



## \#1329314

The transition element that has lowest enthalpy compound ' $X$ ' is: of atomisation, is:

A $\quad Z n$
B Cu

C $V$

D $\quad F C$
Solution
Since $Z n$ is not transition element so transition element having lowest atomisation energy out of $\mathrm{Cu}, \mathrm{V}, \mathrm{Fe}$ is Cu .

## \#1329372

Which of the following combination of statements is true regarding the interpretation of the atomic orbitals?
(a)An electronic is an orbital of high angular momentum stays away from the nucleus than an electron in the orbital of lower angular momentum.
(b)For a given value of the principal quantum number, the size of the orbit is inversely proportional to the azimuthal quantum number.
(c)According to wave mechanics, the ground state angular momentum is h equal to $\frac{h}{2 \pi}$.
(d)The plot of $\psi$ Vs for various azimuthal quantum numbers, show peak shifting towards higher r value.

A $b, c$

B $\quad a, d$

C $a, b$
D $a, c$

## Solution

An electronic is an orbital of high angular momentum stays away from the nucleus than an electron in the orbital of lower angular momentum.
According to Bohr's theory, angular momentum is an integral multiple of $\frac{h}{2 \pi}$. Hence,the ground state angular momentum is $h$ equal to $\frac{h}{2 \pi}$.
Statements $b$ and $c$ are incorrect. As we know principal quantum number depends on size whereas azimuthal quantum number doesn't depend on size.
Hence option D is the correct answer.

## \#1329420

The test performed on compound $X$ and their Inference

| a-2,4-DNP test | Coloured precipitate |
| :--- | ---: |
| b-lodoform test | Yellow precipitate |
| c-Azo-dye test | No dye formation |



B

c


D


Solution
Ans(2) $\rightarrow 2,4-$ DNP test is given by aldehyde on krtone
$\rightarrow$ lodoform test is given by compound having $\mathrm{CH}_{3}-\mathrm{ClIO}$ - group.

## \#1329625



The major product formed in the following reaction is:

A


B


C


D


Solution
Aldehyde reacts at a faster rate than ketone during aldol and sterically less hindered anion will be better nucleophile so self-aldol at
$\mathrm{CH}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{H}$ will be the major product.

## \#1329738

For the reaction, $2 A+B \rightarrow$ products, when the concentration of $A$ and $B$ both were doubled, the rate of the reaction increased from $0.3 \mathrm{~mol}^{-1} S^{-1}$ to $2.4 \mathrm{~mol}^{-1} S^{-1}$. When the concentration of $A$ alone is doubled, the rate increased from $0.3 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ to $0.6 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$

Which of the following statements is correct?

Order of the reaction with respect to $B$ is 2

B Order of the reaction with respect to $A$ is 2
C Total Order of the reaction is 4

D Order of the reaction with respect to $B$ is 1

Solution

$$
\begin{aligned}
r= & K[A]^{x}[B]^{y} \\
& \Rightarrow 8=2^{3}=2^{x+y} \\
& \Rightarrow x+y=3 \ldots(1) \\
& \Rightarrow 2=2^{x} \\
& \Rightarrow x=1, y=2 \\
& \text { Order w.r.t. } A=1 \\
& \text { Order w.r.t. } B=2
\end{aligned}
$$



The correct sequence of amino acids presents in the tripeptide given below is:

A
Leu-Thr-Ser

B
Leu-Ser-Thr

C
Thr-Ser-Leu

D
Val-Ser-Thr

Solution
Leusine




The correct statement regarding the given Ellingham diagram is:

A At $800^{\circ} \mathrm{C}, \mathrm{Cu}$ can be used for the extraction of Zn from ZnO

B At $500^{\circ} \mathrm{C}$, coke can be used for the extraction of Zn from ZnO

C Coke cannot be ussed for the extartion of Cu from $\mathrm{Ca}_{2} \mathrm{O}$.

D At $1400^{\circ} \mathrm{C}, \mathrm{Al}$ can be used for the extraction of Zn from ZnO

## Solution

Ans. 4 According to the given diagram $A /$ can reduce ZnO .
$3 \mathrm{ZnO}+2 \mathrm{Al} \rightarrow 3 \mathrm{Zn}+\mathrm{Al}_{2} \mathrm{O}_{3}$.

## \#1329899

For the following reaction, the mass of water produced from 445 g of $\mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}$ is:
$2 \mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}(\mathrm{~s})+163 \mathrm{O}_{2}(g) \rightarrow 114 \mathrm{CO}_{2}(g)+110 \mathrm{H}_{2} \mathrm{OP}()$

A
495 g

B $\quad 490 \mathrm{~g}$
C $\quad 890 \mathrm{~g}$
D $\quad 445 \mathrm{~g}$

## Solution

Moles of $\mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}(s)=\frac{445}{890}=0.5$ moles
$2 \mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}(s)+163 \mathrm{O}_{2}(g) \rightarrow 114 \mathrm{CO}_{2}(g)+110 \mathrm{H}_{2} \mathrm{OP}(\mathrm{f})$
$n_{\mathrm{H}_{2} \mathrm{O}}=\frac{110}{4}=\frac{55}{2}$
$m_{\mathrm{H}_{2} \mathrm{O}}=\frac{55}{2} \times 18$
$=495 \mathrm{gm}$

The correct match between item / and item // is:

| Item -I | Item-II |
| :--- | :--- |
| Benzaldehyde | Mobile phase |
| Alumina | Adsorbent |
| Acetonitrile | Adsorbate |

A $\quad A \rightarrow Q ; B \rightarrow R ; C \rightarrow P$
B $\quad A \rightarrow P ; B \rightarrow R ; C \rightarrow Q$

C $A \rightarrow Q ; B \rightarrow P ; C \rightarrow R$

D $\quad A \rightarrow R ; B \rightarrow Q ; C \rightarrow P$
Solution
Benzaldehyde is a substance which is absorbed, It acts as a adsorbate.
Alumina is a highly porous substance that adsorbs another substance, It acts as adsorbent.
Acetonitrile is used a mobile phase in chromatography.

## \#1330021

The increasing basicity under of the following compounds is:
A - $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
$\mathrm{B}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
NH
$\mathrm{C}-\mathrm{H}_{3} \mathrm{C}-\stackrel{\mathrm{CH}_{3}}{\mathrm{~N}} \mathrm{~N}-\mathrm{CH}_{3}$
D-Ph- $\stackrel{\mathrm{CH}_{3}}{\mathrm{I}_{3}} \mathrm{~N}-\mathrm{H}$

A $D<C<A<B$

B $\quad A<B<D<C$

C $\quad A<B<C<D$

D $D<C<B<A$

## Solution

$\mathrm{Ph}-\mathrm{CH}_{3} \mathrm{~N}_{\mathrm{N}}-\mathrm{H}<\mathrm{CH}_{3}-\stackrel{\mathrm{CH}}{3}_{\mathrm{I}_{3}}^{\mathrm{N}}-\mathrm{CH}_{3}<\mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{\mathrm{CH}_{2}-\mathrm{CH}_{3}}{\mathrm{~N}^{\mathrm{H}}}<\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$

Ione pair delocalized more steric hinderence less solution energy

## \#1330046

For coagulation of arscnious sulphide sol, which one of the following salt solution will be most effective?

A $\quad \mathrm{AlCl} 3$
B $\quad \mathrm{NaCl}$

C $\mathrm{BaCl}_{2}$

D $\quad \mathrm{Na}_{3} \mathrm{PO}_{4}$

## Solution

Sulphide is-ve charged colloid so cation with maximum charge will be most effective for coagulation.
$A \beta^{++}>B_{a}{ }^{2+}>N_{a}^{+}$coagulatimg power.
\#1330128
At $100^{\circ} \mathrm{C}$, copper $(\mathrm{Cu})$ has FCC unit cell structure with cell edge length of $x_{A}^{\circ}$. What is the approximate density of $\mathrm{Cu}\left(\right.$ in $\left.\mathrm{Cm} \mathrm{Cm}^{-3}\right)$ at this temperature?
[Atomic mass of $\mathrm{Cu}=63.55 u$ ]

A $\frac{105}{x^{3}}$
B $\frac{211}{x^{3}}$
C $\frac{205}{x^{3}}$
D $\frac{422}{x^{3}}$
Solution
Ans4. FCC unit cell $Z=4$

$$
d=\frac{63.5 \times 4}{6 \times 10^{23 \times x^{3} \times 10^{-24}} \mathrm{~g} / \mathrm{cm}^{3}}
$$

$d=\frac{63.5 \times 4 \times 10}{6} \mathrm{~g} / \mathrm{cm}^{3}$
$d=\frac{423.33}{x^{3}} \simeq\left(\frac{422}{x^{3}}\right)$
FCC unit cell $Z=4$
$d=\frac{63.5 \times 4}{6 \times 10^{23 \times} x^{3} \times 10^{-24}} \mathrm{~g} / \mathrm{cm}^{3}$
$d=\frac{63.5 \times 4 \times 10}{6} \mathrm{~g} / \mathrm{cm}^{3}$
$d=\frac{423.33}{x^{3}} \simeq\left(\frac{422}{x^{3}}\right)$

## \#1330212



The major product obtained in the following reaction is:

A


B


C


D


Solution
(3)


## \#1330254

Which of the following conditions in drinking water causes methemoglobinemia?

A $>50 \mathrm{ppm}$ of load
B $>100 \mathrm{ppm}$ of sulphate
C $>50 \mathrm{ppm}$ of chloride
D > 50 ppm of nitrate

## Solution

concentration of nitrate > 50 ppm in drinking water causes methemoglobinemia which is a blood disorder in which abnormal amount of methemoglobin is produced.

## \#1330321

Homoleptic octahedral complexes of a metal ion ' $M^{3+'}$ with there monodententate ligands and $L_{1}, L_{2}, L_{3}$ absorb wavelength in the region of green, blue and red respectively.The increasing order of the ligand strength is:

A $L_{2}<L_{1}<L_{3}$

B $L_{3}<L_{2}<L_{1}$
C $L_{3}<L_{1}<L_{2}$
D $\quad L_{1}<L_{2}<L_{3}$
Solution
Order of $\lambda_{a b s}-L_{3}>L_{1}>L_{2}$
So $\Delta_{o}$ order will be $L_{2}>L_{1}>L_{3}\left(\right.$ as $\Delta_{0} \infty \frac{1}{\lambda_{a b s}}$ )
So order of ligand strength will be $L_{2}>L_{1}>L_{3}$

## \#1330373

The product formed in the reaction of cumene with $\mathrm{O}_{2}$ followed by treatment with dil. $\mathrm{HC} /$ are:

A


B


C


D

and


Solution
Cummene hydroperoxide reaction


## \#1330433

The temporary hardness of water is due to:

A $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$

B NaCl
C $\quad \mathrm{Na}_{2} \mathrm{SO}_{4}$

D $\mathrm{CaCl}_{2}$
Solution
Temporary hardness is caused by bicarbonates of calcium and magnesium. $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ is reponsible for temporary hardness of water.

## \#1330605

The entropy change associated with the conversion of 1 kg of ice at 273 K to water vapours at 383 K is:
(Specific heat of water liquid and water liquid and water vapour are $4.2 \mathrm{KJ} \mathrm{K}^{-1} \mathrm{Kg}^{-1}$ and $2.0 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$; heat of liquid fusion and vapourisation of water are $344 \mathrm{kj}_{\mathrm{g}}{ }^{-1}$ and $2491 \mathrm{~kJ} \mathrm{~kg}^{-1}$, respectively).
$(\log 273=2.436, \log 373=2.572, \log , 383=2.583)$

A $\quad 7.90 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
B $\quad 72.64 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$

Solution

\#1330651
The pH of rain water, is approximately:

A 6.5

B $\quad 7.5$

C 5.6
D $\quad 7.0$
Solution
Rain water becomes acidic because gases present in environment are dissolved so it's pH will be less than 7 . pH of rain water is approximate 5.6

## \#1330739

If the standard electrode potential constant for a cell is $2 V$ at $300 K$ the equilibrium constant $(K)$ for the reaction
$Z n(s)+C u^{2+}(a q) \rightleftharpoons Z n^{2+}(a q)+C u(s)$ at $300 K$ is approximately.
$\left(R=8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, F=96000 \mathrm{Cmol}^{-1}\right)$

A $e^{160}$
B $e^{320}$
C $e^{-160}$
D $e^{-80}$

## Solution

$$
\begin{aligned}
\Delta G^{o}= & -R T \operatorname{Ink}=-n F E_{c e \| l}^{o} \\
& \operatorname{lnk}=\frac{n \times F \times E^{o}}{R \times T}=\frac{2 \times 96000 \times 2}{8 \times 300} \\
& \operatorname{Ink}=160 \\
& e=e^{160}
\end{aligned}
$$

A 32
B $\quad 48$
C $\quad 16$
D 64
Solution
$\operatorname{Ans}(4) \Delta T_{f}=K_{f .} m$
$10=1.86 \times \frac{62 / 62}{W_{k g}}$
$W=0.186 \mathrm{~kg}$
$\Delta W=(250-186)=64 \mathrm{gm}$

## \#1330849

When the first electron gain enthalpy $\left(\Delta_{e g} H\right)$ of oxygen is $-141 \mathrm{~kJ} / \mathrm{mol}$, its second electron gain enthalpy is:

A Almost the same as that of the first
B Negative, but less negative than the first
C A positive value
D
A more negative value than the first

## Solution

Second electron gain enthalpy is always positive for every element.

$$
O_{g}^{-}+e^{-} \rightarrow O_{g}^{-2} ; \Delta H=\text { positive }
$$

## \#1330903



The major product of the following reaction is:

A


B

c


D


Solution


\#1330945
Which of the following compounds is not aromatic?

A


B


C


D


Solution

Ans(3) Do not have $(4 n+2) \pi$ electron it has $4 n \pi$ electrons
So it is Anti aromatic.


## \#1331064

Consider the following reversible chemical reactions:

$$
\begin{gathered}
A_{2}(g)+B r_{2}(g) \\
\rightleftharpoons \\
\quad K_{1}(g A B(g) \ldots(1) \\
6 A B(g)
\end{gathered} K_{2}\left(g A_{2}(g)+3 B_{2} \ldots(2)\right.
$$

The relation between $K_{1}$ and $K_{2}$ is:

A $K_{2}=K_{1}^{3}$
B $\quad K_{2}=K_{1}^{-3}$
C $\quad K_{1} K_{2}=3$

D $\quad K_{1} K_{2}=\frac{1}{3}$
Solution

$$
\begin{aligned}
\text { Ans(2) } & A_{2}(g)+B r_{2}(g) \rightleftharpoons 2 A B(g) \ldots(1) \\
\Rightarrow & \text { eq. (1) } \times 3 \\
& 6 A B(g) \rightleftharpoons 3 A_{2}(g)+3 B_{2} \ldots(2) \\
& \Rightarrow\left(\frac{1}{K_{1}}\right)^{3}=k_{2} \Rightarrow k_{2}=\left(k_{1}\right)^{-3}
\end{aligned}
$$

## \#1328994

Let $f$ be differentiable function from R to R such that $|f(x)-f(y)| \leq 2|x-y|^{\frac{3}{2}}$, for all $x, y \varepsilon \mathrm{R}$.
If $f(0)=1$ then $\int_{0}^{1} f^{2}(x) d x$ is equal to :

A 0
B $\quad \frac{1}{2}$

C $\quad 2$
D 1
Solution
$|f(x)-f(y)| \leq 2|x-y|^{\frac{3}{2}}$ divide both side by $|x-y|$
$\left|\frac{f(x)-f(y)}{x-y}\right| \leq 2|x-y|^{\frac{1}{2}}$
Apply limit $x \rightarrow y$
$\left|f^{\prime}(y)\right| \leq 0 \Rightarrow f^{\prime}(y)=0 \Rightarrow f(y)=c \Rightarrow f(x)=1$
$\int_{0}^{1} 1 . d x=1$
\#1329015
If $\int_{0}^{\frac{\pi}{3}} \frac{\tan \theta}{\sqrt{2 k \sec \theta}} d \theta=1-\frac{1}{\sqrt{2}},(k>0)$, then the value of k is :
A 2
B $\quad \frac{1}{2}$
C 4

D $\quad 1$

## Solution

$\frac{1}{\sqrt{2 k}} \int_{0}^{\frac{\pi}{3}} \frac{\tan \theta}{\sqrt{\sec \theta}} d \theta=\frac{1}{\sqrt{2 k}} \int_{0}^{\frac{\pi}{3}} \frac{\sin \theta}{\sqrt{\cos \theta}} d \theta$
$=-\left.\frac{1}{\sqrt{2 k}} 2 \sqrt{\cos \theta}\right|_{0} ^{\overline{3}}=\frac{\sqrt{2}}{\sqrt{k}}\left(\frac{1}{\sqrt{2}}-1\right)$
given it is $1-\frac{1}{\sqrt{2}} \Rightarrow k=2$
\#1329090
The coefficient of $t^{4}$ in the expansion of $\left(\frac{1-t^{6}}{1-t}\right)^{3}$ is

A 12
B $\quad 15$

C 10

D $\quad 14$
Solution
$\left(1-t^{6}\right)^{3}(1-t)^{-3}$
$\left(1-t^{18}-3 t^{6}+3 t^{12}\right)(1-t)^{-3}$
$\Rightarrow$ coefficient of $t^{4}$ in $(1-t)^{-3}$ is
${ }^{3+4-1} C_{4}={ }^{6} C_{2}=15$

## \#1329122

For each $x \varepsilon R$, let $[x]$ be the greatest integer less than or equal to $x$.Then
$\lim _{x \rightarrow 0^{-}} \frac{x([x]+|x|) \sin [x]}{|x|}$ is equal to
A $\quad-\sin 1$
B 0
C $\quad 1$
D $\quad \sin 1$

## Solution

$\lim _{x \rightarrow 0^{-}} \frac{x([x]+|x|) \sin [x]}{|x|}$
When $x \rightarrow 0^{-}$
$[x]=-1$
$|x|=-x$
$\Rightarrow \lim _{x \rightarrow 0^{-}} \frac{x(-x-1) \sin (-1)}{-x}=-\sin 1$

## \#1329168

If the both roots of the quadratic equation $x^{2}-m x+4=0$ are real and distinct and they lie in the interval $[1,5]$, then $m$ lies in the interval:

A $(4,5)$
B $(3,4)$
C $(5,6)$
D $\quad(-5,-4)$

## Solution

$m^{2}-16>0 \therefore m \in(-\infty, 4) \cup(4, \infty)$
$1<-\frac{-m}{2}<5 \quad 2<m<10$
$1-m+4>0$ and $25-m+4>0$
$m<4$ and $m<\frac{29}{5}$
$m \in(4,5)$

\#1329280
If $\left[\begin{array}{ccc}e^{t} & e^{-t} \cos t & e^{-t} \sin t \\ e^{t} & -e^{-t} \cos t-e^{-t} \sin t & -e^{-t} \sin t+e^{-t} \cos t \\ e^{t} & 2 e^{-t} \sin t & -2 e^{-t} \cos t\end{array}\right]$ Then $A$ is -
A Invertible only if $t=\frac{\pi}{2}$

D
invertible only if $t=\pi$
Solution
$|A|=e^{-t}\left[\begin{array}{ccc}1 & \cos t & \sin t \\ 1 & -\cos t-\sin t & -\sin t+\cos t \\ 1 & 2 \sin t & -2 \cos t\end{array}\right]$
$=e^{-t}\left[5 \cos ^{2} t+5 \sin ^{2} t\right] \forall t \in R$
$=5 e^{-t} \neq 0 \forall t \in R$

## \#1329318

The area of the region
$A=[(x, y): 0 \leq y \leq x|x|+1$ and $-1 \leq x \leq 1]$ in sq. units is :

A $\frac{2}{3}$
B $\quad \frac{1}{3}$
C 2
D $\frac{4}{3}$

## Solution

The graph is as follows:
$\int_{-1}^{0}\left(-x^{2}+1\right) d x+\int_{0}^{1}\left(x^{2}+1\right) d x=2$


## \#1329358

Let $z_{0}$ be a root of the quadratic equation $x^{2}+x+1=0$. If $z=3+6 i z_{0}^{81}-3 i z_{0}^{93}$, then arg $z$ is equal to

A $\frac{\pi}{4}$
B $\quad \frac{\pi}{3}$
C $\quad 0$
D $\quad \frac{\pi}{6}$

## Solution

$z_{0}=\omega$ or $\omega^{2}$ (where $\omega$ is a non real cube root of unity)
$z=3+6 i(\omega)^{81}-3 i(\omega)^{93}$
$z=3+3 i$
$\Rightarrow \arg z=\frac{\pi}{4}$

Let $\vec{a}=\vec{i}+\vec{j}+\sqrt{1} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{1} \hat{j}+\sqrt{2} \hat{k}$ and $\vec{c}=5 \hat{i}+\hat{j}+\sqrt{2} \hat{k}$ be three vectors such that the projection vector of $\vec{b}$ on $\vec{a}$ is $\vec{a}$. If $\vec{a}+\vec{b}$ is perpendicular to $\vec{c}$, the $|\vec{b}|$ is equal to:

A $\sqrt{22}$
B 4
C $\sqrt{32}$
D 6
Solution
Projection of $\vec{b}$ on $\vec{a}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}=|\vec{a}| \Rightarrow b_{1}+b_{2}=2 \ldots \ldots .(1)$ and $(\vec{a}+\vec{b}) \perp \vec{c} \Rightarrow(\vec{a}+\vec{b} . \vec{c})=0 \Rightarrow 5 b_{1}+b_{2}=-10 \ldots \ldots$ (2)from (1) and (2) $\Rightarrow b_{1}=-3$ and $b_{2}=5$ then $|\vec{b}|=\sqrt{b_{1}^{2}+b_{2}^{2}+2}=6$

## \#1329697

Let $A(4,-4)$ and $B(9,6)$ be point on the parabola, $y^{2}=4 x$. Let $C$ be chosen the arc $A O B$ of the parabola, where $O$ is the origin ,such that the area of $\triangle A C B$ is maximum.Then, the area (in sq.units) of $\triangle A C B$ is:

A $31 \frac{3}{4}$
B $\quad 32$
C $30 \frac{1}{2}$
D $31 \frac{1}{4}$

## Solution

Area $=5\left|t^{2}-t-6\right|$
$=5\left|\left(t-\frac{1}{2}\right)^{2}-\frac{25}{4}\right|$
Area is maximum when $t=\frac{1}{2}$
therefore Area $=31 \frac{1}{4}$


## \#1329783

The logical statement $[\sim(\sim p \vee q) \vee(p \wedge r) \wedge(\sim q \wedge r)$ is equivalent to:

A $\quad(p \wedge r) \wedge \sim q$
B $\quad(\sim p \wedge \sim q) \wedge r$
C $\quad \sim p \vee r$
D $\quad(p \wedge \sim q) \vee r$

## Solution

$s[\sim(\sim p \vee q) \wedge(p \wedge r)] \cap(\sim q \wedge r)$
$\equiv[(p \wedge \sim q) \vee(p \wedge r)] \wedge(\sim q \wedge r)$
$\equiv[p \wedge(\sim q \vee r)] \wedge(\sim q \wedge r)$
$\equiv p \wedge(q \sim \wedge r)$
$\equiv(p \wedge r) \sim q$

## \#1329835

 green ball is added to the urn; the original ball is not returned to the urn. Now, a second ball is drawn at random from it. The probability that the second ball is red, is :

A $\underline{26}$
B $\quad \frac{32}{49}$
C $\quad 27$
C $\overline{49}$
D $\frac{21}{49}$

## Solution

$E_{1}$ : Event of drawing a Red ball and placing a
green ball in the bag
$E_{2}$ : Event of drawing a green ball and placing a
red ball in the bag
$E$ : Event of drawing a red ball in second draw
$P(E)=P\left(E_{1}\right) \times P\left(\frac{E}{E_{1}}\right)+P\left(E_{2}\right) \times P\left(\frac{E}{E_{2}}\right)$
$=\frac{5}{7} \times \frac{4}{7}+\frac{2}{7} \times \frac{6}{7}=\frac{32}{49}$
\#1329862
If $0 \leq x<\frac{\pi}{2}$, the the number of values of $x$ for which $\sin x-\sin 2 x+\sin 3 x=0$ is

## A 2

B $\quad 1$

C 3

D 4

## Solution

$$
\begin{aligned}
& \sin x-\sin 2 x+\sin 3 x=0 \\
& \Rightarrow(\sin x+\sin 3 x)-\sin 2 x=0 \\
& \Rightarrow 2 \sin x \cdot \cos x-\sin 2 x=0 \\
& \Rightarrow \sin 2 x(2 \cos x-1)=0 \\
& \Rightarrow \sin 2 x=0 \text { or } \cos x=\frac{1}{2} \\
& \Rightarrow x=0, \frac{\pi}{3}
\end{aligned}
$$

## \#1329886

The equation of the plane containing the straight $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=$ line and perpendicular to the plane
containing the straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is:

A $\quad x+2 y-2 z=0$

B $\quad x-2 y+z=0$
C $\quad 5 x+2 y-4 z=0$

D $\quad 3 x+2 y-3 z=0$
Solution
Plane 1: $a x+b y+c z=0$ contains line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$
$\therefore 2 a+3 b+4 c=0 \cdots(i)$
Plane 2: $a^{\prime} x+b^{\prime} y+c^{\prime} z=0$ is perpendicular to plane containing lines.
$\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$
$\therefore 3 a^{\prime}+4 b^{\prime}+2 c^{\prime}=0$ and $4 a^{\prime}+2 b^{\prime}+3 c^{\prime}=0$
$\Rightarrow \frac{a^{\prime}}{12-4}=\frac{b^{\prime}}{8-9}=\frac{c^{\prime}}{6-16}$
$\Rightarrow 8 a-b-10 c=0 \cdots$ (ii)
From (i) and (ii), we get
$\frac{a}{-30+4}=\frac{b}{32+20}=\frac{c}{-2-24}$
$\Rightarrow$ Equation of plane $x-2 y+z=0$

## \#1329912

Let the equations of two sides of a triangle be $3 x-2 y+6=0$ and $4 x+5 y-20=0$ If the orthocentre of this triangle is at $(1,1)$, then the equation of its third side is :

A $\quad 122 y-26 x-1675=0$

B $\quad 26 x+61 y+1675=0$
C $\quad 122 y+26 x+1675=0$
D $26 x-122 y-1675=0$
Solution

As orthocenter is the intersection of altitudes

Let Triangle be $\triangle \mathrm{ABC}$
In which $C M$ is perpendicular to $A B$
and $B N$ is perpendicular to $A C$

At first we have to find altitude perpendicular to line $4 x+5 y-20=0$ and passing through (1,1) that means we have to equation of $C M$ :- $5 x-4 y-1=0$

Same way we have to find the altitude perpendicular to the line $3 x-2 y+6=0$
and passing through $(1,1)$ that means we have to find equation of BN which we get $\mathrm{BN}:-2 x+3 y-5=0$

Now we have to find the intersection point of AC and CM which we get coordinate of Point C which is $\left(-13, \frac{-33}{2}\right)$
Same way we have to find the intersection point of $A B$ and $B N$ which we get coordinate of point $B$ which is $\left(\frac{35}{2},-10\right)$

Now as we have to find the equation of line BC and we know point B and C i.e. $\mathrm{B}\left(\frac{35}{2},-10\right)$ and $\mathrm{C}\left(-13, \frac{-33}{2}\right)$

By two point form of line we get equation of line BC and that will be $26 x-122 y-1675=0$


## \#1329939

If $x=3 \tan t$ and $y=3 \sec t$, the the value of $\frac{d^{2} y}{d x^{2}}$ at $t=\frac{\pi}{4}$, is :
A $\frac{3}{2 \sqrt{2}}$
B $\frac{1}{3 \sqrt{2}}$
C $\frac{1}{6}$
D $\frac{1}{6 \sqrt{2}}$

## Solution

$\frac{d x}{d t}=3 \sec ^{2} t$
$\frac{d y}{d t}=3 \sec t \tan t$
$\frac{d y}{d x}=\frac{\tan t}{\sec t}=\sin t$
$\frac{d^{2} y}{d x^{2}}=\cos t \frac{d t}{d x}$
$=\frac{\cos t}{3 \sec ^{2} t}=\frac{\cos ^{3} t}{3}=\frac{1}{3.2}=\frac{1}{6 \sqrt{2}}$

## \#1329976

If $x=\sin ^{-1}(\sin 10)$ and $y=\cos ^{-1}(\cos 10)$, then $y-x$ is equal to:

B $\quad 7 \pi$

C 0

D $\quad 10$

## Solution

$x=\sin ^{-1}(\sin 10)=3 \pi-10$
$y=\cos ^{-1}(\cos 10)=4 \pi-10$
$y-x=\pi$

$x=\sin ^{-1}(\sin 10)=3 \pi-10$


## \#1330033

If the lines $x=a y+b, z=c y+d$ and $x=a^{\prime} z+b^{\prime}, y=c^{\prime} z+d^{\prime}$ are perpendicular, then:

A $\quad c c^{\prime}+a+a^{\prime}=0$
B $a a^{\prime}+c+c^{\prime}=0$

C $a b^{\prime}+b c^{\prime}+1=0$
D $\quad b b^{\prime}+c c^{\prime}+1=0$
Solution
Line $x=a y+b, z=c y+d \Rightarrow \frac{x-b}{a}=\frac{y}{1}=\frac{z-d}{c}$
Line $x=a^{\prime} z+b^{\prime}, y=c^{\prime} z+d^{\prime}$
$\rightarrow \frac{x-b^{\prime}}{a^{\prime}}=\frac{y-d^{\prime}}{c^{\prime}}=\frac{z}{1}$
Given both line are perpendicular
$\Rightarrow a a^{\prime}+c^{\prime}+c=0$

## \#1330072

The number of all possible positive integral values of $\alpha$ for which the roots of the quadratic equation, $6 x^{2}-11 x+\alpha=0$ are rational numbers is

A 2

B 5
C 3

D 4

Solution
$6 x^{2}-11 x+\alpha=0$
given roots are rational
$\Rightarrow D$ must be the perfect square
$\Rightarrow 121-24 \alpha=\lambda^{2}$
$\Rightarrow$ maximum value of $\alpha$ is 5
$\alpha=1 \Rightarrow \lambda \notin I$
$\alpha=2 \Rightarrow \lambda \notin I$
$\alpha=3 \Rightarrow \lambda \in I$
$\alpha=4 \Rightarrow \lambda \in I$
$\alpha=5 \Rightarrow \lambda \in I \Rightarrow 3$ intergral value
\#1330134
A hyperbola has its centre at the origin, passes through the point $(4,2)$ and has transverse axis of length 4 along the $x$-axis. Then the eccentricity of the hyperbola is :

A $\frac{2}{\sqrt{3}}$
B $\quad \frac{3}{2}$
C $\sqrt{3}$
D $\quad 2$

## Solution

$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
$2 a=4=2$
$\frac{x^{2}}{4}-\frac{y^{2}}{b^{2}}=1$
Passes through $(4,2)$
$4=\frac{4}{b^{2}}=1 \Rightarrow b^{2}=\frac{4}{3} \Rightarrow e=\frac{2}{\sqrt{3}}$


Let $A=\{x \varepsilon R: x$ is not a positive integer $\}$
Define a function $f: A \rightarrow R$ as $f(x)=\frac{2 x}{x-1}$ then $f$ is

A injective but not surjective
B
not injective

C surjective but not injective
D neither injective nor surjective

## Solution

$f(x)=2\left(1+\frac{1}{x-1}\right)$
$f^{\prime}(x)=-\frac{2}{(x-1)^{2}}$
$\Rightarrow \mathrm{f}$ is one - one but not onto

## \#1330248

If $f(x)=\int \frac{5 x^{8}+7 x^{6}}{\left(x^{2}+1+2 x^{7}\right)^{2}} d x,(x \geq 0)$ and $f(0)=0$, the the value of $f(1)$ is:
A $-\frac{1}{2}$
B $\quad \frac{1}{2}$
C $-\frac{1}{4}$
D $\frac{1}{4}$

## Solution

$\int \frac{5 x^{8}+7 x^{6}}{\left(x^{2}+1+2 x^{7}\right)^{2}} d x$
$\int \frac{5 x^{-6}+7 x^{-8}}{\left(\frac{1}{x^{7}}+\frac{1}{x^{5}}+2\right)^{2}} d x=\frac{1}{2+\frac{1}{x^{5}}+\frac{1}{x^{7}}}+C$
As $f(0)=0, f(x)=\frac{x^{7}}{2 x^{7}+x^{2}+1}$
$f(1)=\frac{1}{4}$

## \#1330266

If the circles $x^{2}+y^{2}-16 x-20 y+164=r^{2}$ and $(x-4)^{2}+(y-7)^{2}=36$ intersect at two distinct point then:

A $\quad 0<r<11$
B $\quad 1<r<11$

C $\quad r>11$
D $\quad r=11$

## Solution

$x^{2}+y^{2}-16 x-20 y+164=r^{2}$
$A(8,10), R_{1}=r$
$(x-4)^{2}+(y-7)^{2}=36$
$B(4,7), R_{2}=6$
$\left|R_{1}-R_{2}\right|<A B<R_{1}+R_{2}$
$\Rightarrow 1<r<11$

## \#1330333

Let $S$ be the set of all triangles in the xy-plane, each having one vertex at the origin and the other two vertices lie on coordinate axes with integral coordinates. If each triangle in $S$ has area 50 sq. units, then the number of elements in the set $S$ is:

A $\quad 9$

B $\quad 18$
C $\quad 32$
D 36

## Solution

Let $A(\alpha, 0)$ and $B(0, \beta)$
be the vectors of the given triangle $A O B$
$\Rightarrow|\alpha \beta|=100$
$\Rightarrow$ Number of triangle
$=4 \times($ number of divisors of 100$)$
$4 \times 9=36$

## \#1330395

The sum of the following series $1+6+\frac{-\left(1^{2}+2^{2}+3^{2}\right)}{7}+\frac{12\left(1^{2}+2^{2}+3^{2}+4^{2}\right.}{9}+\frac{15\left(1^{2}+2^{2}+\ldots+5^{2}\right.}{11}+\ldots$. up to 15 terms is:
A 7820

B $\quad 7830$

C $\quad 7520$

D $\quad 7510$

## Solution

$T_{n}=\frac{(3+(n-1) \times 3)\left(1^{2}+2^{2}+\ldots+n^{2}\right)}{(2 n+1)}$
$T_{n}=\frac{3 \cdot \frac{n(n+1)(2 n+1)}{6}}{2 n+1}=\frac{n^{2}(n+1)}{2}$
$S_{15}=\frac{1}{2} \sum_{n=1}^{15}\left(n^{3}+n^{2}\right)=\frac{1}{2}\left[\left(\frac{15(15+1)}{2}\right)^{2}+\frac{15 \times 16 \times 31}{6}\right]$
$=7820$

## \#1330501

Let $a, b$ and $c$ be the $7 t h, 11 t h$ and $13 t h$ terms respectively of a non-constant A.P. If these are also the three consecutive terms of a G.P., then $\frac{a}{c}$ is equal to:
A $\frac{1}{2}$
B 4
C $\quad 2$
D $\frac{7}{13}$

## Solution

$a=A+6 d$
$b=A+10 d$
$c=A+12 d$
$a, b, c$ are in G.P
$\Rightarrow(A+10 d)^{2}=(A+6 d)(a+12 d)$
$\Rightarrow \frac{A}{d}=-14$
$\frac{a}{c}=\frac{A+6 d}{A+12 d}=\frac{6+\frac{A}{d}}{12+\frac{A}{d}}=\frac{6-14}{12-14}=4$

## \#1330580

If the system of linear equation $x-4 y+7 z=g, 3 y-5 z=h$ and $-2 x+5 y-9 z=k$ is consistent ,then :

A $\quad g+h+k=0$
B $2 g+h+k=0$
C $\quad g+h+2 k=0$

D $\quad g+2 h+k=0$
Solution
$P_{1} \equiv x-4 y+7 z-g=0$
$P_{2} \equiv 3 x-5 y-h=0$
$P_{3} \equiv 2 x+5 y-9 z-k=0$
Here $\Delta=0$
$2 P_{1}+P_{2}+P_{3}=0$
$2 g+h+k=0$
\#1330665
Let $f:[0,1] \rightarrow R$ be such that $f(x y)=f(x) . f(y)$ for all $\mathrm{x}, \mathrm{y}, \in[0,1]$, and $f(0) \neq 0$. If $y=y(x)$ satisfies the differential equation,$\frac{d y}{d x}=f(x)$ with $y(0)=1$, then $y\left(\frac{1}{4}\right)+y\left(\frac{3}{4}\right)$ is equal to

A 4
B 3
C 5
D $\quad 2$

## Solution

$f(x y)=f(x) . f(y)$
$f(0)=1$ as $f(0) \neq 0$
$\Rightarrow f(x)=1$
$\frac{d y}{d x}=f(x)=1$
$\Rightarrow y=x+c$
At, $x=0, y=1 \Rightarrow c=1$
$y=x+1$
$\Rightarrow y\left(\frac{1}{4}\right)+y\left(\frac{3}{4}\right)=\frac{1}{4}+1+\frac{3}{4}+1=3$

A data consists of $n$ observation: $x_{1}, x_{2}, \ldots \ldots \ldots, x_{n}$. If $\sum_{i=1}^{n}\left(x_{i}+1\right)^{2}=9 n$ and $\sum_{i=1}^{n}\left(x_{i}-1\right)^{2}=5 n$, then the standard deviation of this data is:
A 5
B $\sqrt{5}$
C $\sqrt{7}$
D 2
Solution
$\sum\left(x_{i}+1\right)^{2}=9 n \ldots \ldots . .(1)$
$\left.\sum\left(x_{i}-1\right)^{2}=5 n \ldots \ldots(2)\right)$
(1) $+(2) \Rightarrow \sum\left(x_{1}^{2}+1\right)=7 n$
$\Rightarrow \frac{\sum x_{i}^{2}}{n}=6$
(1) $-(2) \Rightarrow 4 \sum x_{i}=4 n$
$\Rightarrow \frac{\sum x_{i}}{n}=1$
$\Rightarrow$ variance $=6-1=5$
$\Rightarrow$ Standard deviation $=\sqrt{5}$

## \#1330846

The number of natural numbers less than 7,000 which can be formed by using the digits $0,1,3,7,9$ (repitition of digits allowed) is equal to :

A 250
B 374
C $\quad 372$
D 375

## Solution

| $a_{1}$ | $a_{2}$ | $a_{3}$ |
| :--- | :--- | :--- |

Number of numbers $5^{3}-1$

| $a_{4}$ | $a_{1}$ | $a_{2}$ | $a_{3}$ |
| :--- | :--- | :--- | :--- |

2 ways for $a_{4}$
Number of number $=2 \times 5^{3}$
Required number $5^{3}+2 \times 5^{3}-1=374$

