\#1330202

A uniform metallic wire has a resistance of 18Ω and is bent into an equilateral triangle. Then, the resistance between any two vertices of the triangle is

A 8Ω

B 12Ω

C 4Ω
D $\quad 2 \Omega$
Solution
$R_{e q}$ between any two vertex will be
$\frac{1}{R_{\text {eq }}}=\frac{1}{12}+\frac{1}{16} \Rightarrow R_{\text {eq. }}=4 \Omega$.

\#1330226
A satellite is moving with a constant speed v in circular orbit around the earth. An object of mass ' m ' is ejected from the satellite such that it just escapes from the gravitational pull of the earth. At the time of ejection, the kinetic energy of the object is

A $\quad \frac{3}{2} m_{V^{2}}$
B $\quad m v^{2}$

C $2 m v^{2}$

D $\quad \frac{1}{2} m v^{2}$
Solution
At height r from center of earth. orbital velocity
$=\sqrt{\frac{G M}{r}}$
\therefore By energy conservation
$K E$ of ' m ' $+\left(-\frac{G M m}{r}\right)=0+0$
(At infinity, $P E=K E=0$)
$\Rightarrow K E$ of ${ }^{\prime} m$ ' $=\frac{G M m}{r}=\left(\sqrt{\frac{G M}{r}}\right)^{2} m=m_{\nu^{2}}$

\#1330246

A solid metal cube of edge length 2 cm is moving in a positive y direction at a constant speed of $6 \mathrm{~m} / \mathrm{s}$. There is a uniform magnetic field of $0.1 T$ in the positive z - direction The potential difference between the two faces of the cube perpendicular to the x-axis, is:

A $6 m V$
B $\quad 1 \mathrm{mV}$
C $\quad 12 \mathrm{mV}$

D $\quad 2 m V$

Potential difference between two faces perpendicular to x-axis will be
I. $\left(\vec{V}^{\times}{ }_{\vec{B}}\right)=12 \mathrm{mV}$.

\#133028

A parallel plate capacitor is of area $6 \mathrm{~cm}^{2}$ and a separation 3 mm . The gap is filled with three dielectric materials of equal thickness (see figure) with dielectric constant $K_{1},=10, K_{2}=12$ and, $K_{3}+14$. The dielectric constant of a material which when fully inserted in above capacitor gives same capacitance would be

A 12

B 4

C 36

D $\quad 14$

Solution
Let dielectric constant of material used be K.
$\therefore \frac{10 \epsilon_{0} A / 3}{d}+\frac{12 \epsilon_{0} A / 3}{d}+\frac{14 \epsilon_{0} A / 3}{d}=\frac{K \epsilon_{0} A}{d}$
$\Rightarrow K=12$.
Let dielectric constant of material used be K.
$\therefore \frac{10 \epsilon_{0} A / 3}{d}+\frac{12 \epsilon_{0} A / 3}{d}+\frac{14 \epsilon_{0} A / 3}{d}=\frac{K \epsilon_{0} A}{d}$
$\Rightarrow K=12$.

\#1330297

A 2 w carbon resistor is color coded with green, black, red and brown respectively. The maximum current which can be passed through this resistor is

A 63 mA

B $\quad 0.4 \mathrm{~mA}$

C $\quad 100 \mathrm{~mA}$

D 20 mA
Solution
$P=i^{2} R$.
\therefore for $i_{\text {max }}, R$ must be minimum
from color coding $R=50 \times 10^{2} \Omega$
$\therefore i_{\max }=20 \mathrm{~mA}$.

\#1330328

In a Young's double slit experiment with slit separation 0.1 mm , one observes a bright fringe at angle $\frac{1}{40}$ rad by using light of wavelength λ_{1}. When the light of wavelength λ_{2} is used a bright fringe is seen at the same angle in the same set up. Given that λ_{1} and λ_{2} are in visible range (380 nm to 740 nm), their values are

A $380 \mathrm{~nm}, 500 \mathrm{~nm}$

B $625 \mathrm{~nm}, 500 \mathrm{~nm}$

C $\quad 380 \mathrm{~nm}, 525 \mathrm{~nm}$

Solution

Path difference $=d \sin \theta=d \theta$
$=0.1 \times \frac{1}{40} \mathrm{~mm}=2500 \mathrm{~nm}$
or bright fringe, path difference must be integral multiple of λ.
$\therefore 2500=n \lambda_{1}=m \lambda_{2}$
$\therefore \lambda_{1}=625, \lambda_{2}=500($ from $m=5)$
(for $n=4$).

\#1330345

A magnet of total magnetic moment $10^{-2 \hat{i}} A-m^{2}$ is placed in a time varying magnetic field. $\hat{B_{j}}(\cos \omega t)$ where $B=1$ Tesla and $\omega=0.125$ rad/s. The work done for reversing the direction of the magnetic moment at $t=1$ second, is__?

A 0.007 J
B $\quad 0.02 \mathrm{~J}$

C $\quad 0.01 \mathrm{~J}$

D 0.028 J

Solution

Work done, $W=\left(\Delta_{\mu}\right) \cdot \vec{B}$
$=2 \times 10^{-2 \times 1 \cos (0.125)}$
$=0.02 \mathrm{~J}$
\therefore correct answer is (2).

\#1330369

 the force F is distributed uniformly over the mop and if coefficient of friction between the mop and the floor is μ, the torque, applied by the machine on the mop is

A $\frac{2}{3} \mu F R$
B $\mu F R / 3$

C $\mu F R / 2$

D $\mu F R / 6$

Solution

Consider a strip of radius x and thickness $d x$,

Torque due to friction on this strip.
$\int d t=\int_{0}^{R} \frac{x \mu F \cdot 2 \pi x d x}{\pi R^{2}}$
$T=\frac{2 \mu F}{R^{2}} \cdot \frac{R^{3}}{3}$
$T=\frac{2 \mu F R}{3}$
\therefore correct answer is (1).

\#1330412

Using a nuclear counter the count rate of emitted particles from a radioactive source is measured. At $t=0$ it was 1600 counts per second and $t=8$ seconds it was 100 counts per second. The count rate observed, as counts per second, at $t=6$ seconds is close to

A 150

B 360
C 200
D 400
Solution
At $t=0, A_{0}=\frac{d N}{d t}=1600 \mathrm{C} / \mathrm{s}$
at $t=8 \mathrm{~s}, A=100 \mathrm{C} / \mathrm{s}$
$\frac{A}{A_{0}}=\frac{1}{16}$ in 8 sec
Therefore half life is $t_{1 / 2}=2 \mathrm{sec}$
\therefore Activity at $t=6$ will be $1600\left(\frac{1}{2}\right)^{3}$
$=200 \mathrm{C} / \mathrm{s}$
\therefore correct answer is (3).

\#1330431

If the magnetic field of a plane electromagnetic wave is given by (The speed of light $\left.=3 \times 10^{8 /} / \mathrm{m} / \mathrm{s}\right) B=100 \times 10^{-6} \sin \left[2 \pi \times 2 \times 10^{15}\left(t-\frac{x}{c}\right)\right]$ then the maximum electric field associated with it is

A $\quad 4 \times 10^{4} \mathrm{~N} / \mathrm{C}$
B $\quad 4.5 \times 10^{4} \mathrm{~N} / \mathrm{C}$
C $\quad 6 \times 10^{4} \mathrm{~N} / \mathrm{C}$
D $\quad 3 \times 10^{4} \mathrm{~N} / \mathrm{C}$

Solution

$E_{0}=B_{0} \times c$
$=100 \times 10^{-6} \times 3 \times 10^{8}$
$=3 \times 10^{4} \mathrm{~N} / \mathrm{C}$
\therefore correct answer is $3 \times 10^{4} \mathrm{~N} / \mathrm{C}$.

\#1330495

 a point at distance r from their common centre, where $r<a$, would be

A

$$
\frac{Q}{4 \pi \epsilon_{0}(a+b+c)}
$$

B $\frac{Q(a+b+c)}{4 \pi \epsilon_{0}\left(a^{2}+b^{2}+c^{2}\right)}$
C $\frac{Q}{12 \pi \epsilon_{0}} \frac{a b+b c+c a}{a b c}$
D $\frac{Q}{4 \pi \epsilon_{0}} \frac{\left(a^{2}+b^{2}+c^{2}\right)}{\left(a^{3}+b^{3}+c^{3}\right)}$
Solution
Potential at point $P, V=\frac{k Q_{a}}{a}+\frac{k Q_{b}}{b}+\frac{k Q_{c}}{c}$
$\because Q_{a}: Q_{b}: Q_{c}:: a^{2}: b^{2}: c^{2}$
$\left\{\right.$ since $\left.\sigma_{a}=\sigma_{b}=\sigma_{c}\right\}$
$\therefore Q_{a}=\left[\frac{a^{2}}{a^{2}+b^{2}+c^{2}}\right] Q$
$Q_{b}=\left[\frac{b^{2}}{a^{2}+b^{2}+c^{2}}\right] Q$
$Q_{c}=\left[\frac{c^{2}}{a^{2}+b^{2}+c^{2}}\right] Q$
$V=\frac{Q}{4 \pi \epsilon_{0}}\left[\frac{(a+b+c)}{a^{2}+b^{2}+c^{2}}\right]$
\therefore correct answer is (2).

\#1330516

Water flows into a large tank with flat bottom at the rate of $10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}$. Water is also leaking out of a hole of area $1 \mathrm{~cm}^{2}$ at its bottom. If the height of the water in the tank remains steady, then this height is__?

A 4 cm
B $\quad 2.9 \mathrm{~cm}$
C $\quad 1.7 \mathrm{~cm}$
D $\quad 5.1 \mathrm{~cm}$

Solution

Since height of water column is constant therefor, water inflow rate ($Q_{i n}$)
= water outflow rate
$Q_{i n}=10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
$Q_{\text {out }}=A u=10^{-4} \times \sqrt{2 g h}$
$10^{-4}=10^{-4}=\sqrt{20 \times h}$
$h=\frac{1}{20} m$
$h=5 \mathrm{~cm}$
\therefore correct answer is (4).

\#1330574

A piece of wood of mass 0.03 kg is dropped from the top of a 100 m height building. At the same time, a bullet of mass 0.02 kg is fired vertically upward, with a velocity
$100 m_{s}{ }^{-1}$, from the ground. The bullet gets embedded in the wood. Then the maximum height to which the combined system reaches above the top of the building before falling below is : $\left(g=10 m_{S}{ }^{-2}\right)$.

A $\quad 30 \mathrm{~m}$
B $\quad 10 \mathrm{~m}$
C $\quad 40 \mathrm{~m}$

D $\quad 20 \mathrm{~m}$
Solution
Time taken for the particles to collide,
$t=\frac{d}{V_{\text {rel }}}=\frac{100}{100}=1 \mathrm{sec}$
Speed of wood just before collision $=g t=10 \mathrm{~m} / \mathrm{s}$ and speed of bullet just before collision $v-g t=100-10=90 \mathrm{~m} / \mathrm{s}$
Now, conservation of linear momentum just before and after the collision -
$-(0.02)(1 v)+(0.02)(9 v)=(0.05) v$
$\Rightarrow 150=5 v$
$\Rightarrow v=30 \mathrm{~m} / \mathrm{s}$
Max. height reached by body $h=\frac{v^{2}}{2 g}$
Before : $0.03 \mathrm{~kg} \downarrow 10 \mathrm{~m} / \mathrm{s}$
$0.02 \mathrm{~kg} \uparrow 90 \mathrm{~m} / \mathrm{s}$
After: $v 0.05 \mathrm{~kg}$
$h=\frac{30 \times 30}{2 \times 10}=40 \mathrm{~m}$.

\#1330591

The density of a material in $S /$ units is $128 \mathrm{~kg} \mathrm{~m}^{-3}$. In certain units in which the unit of length is 25 cm and the unit of mass is 50 g , the numerical value of density of the material is

A 410

B 640
C $\quad 16$
D 40

Solution
$\frac{128 \mathrm{~kg}}{\mathrm{~m}^{3}}=\frac{125(50 \mathrm{~g})(20)}{(25 \mathrm{~cm})^{4}(4)^{3}}$
$=\frac{128}{64}(20)$ units
$=40$ units.

\#1330615

To get output ' 1 ' and R, for the given logic gate circuit the input values must be

A $\quad X=0, Y=1$

B $\quad X=1, Y=1$

C $\quad X=0, Y=0$
D $X=1, Y=0$
Solution
$p=x+y$
$Q={ }_{y^{-}} x=y+{ }_{x}$
$O / P=P+Q$
To make O / P
$P+Q$ must be ' O '
So, $y=0$
$x=1$.

\#1330639

A block of mass m is kept on a platform which starts from rest with a constant acceleration $\mathrm{g} / 2$ upwards, as shown in the figure. Work done by normal reaction on block in time t is___?

A 0
B $\frac{3 m_{g}{ }^{2} t^{2}}{8}$

C $-\frac{m_{g} t^{2}}{8}$
D $\frac{m g^{2} t^{2}}{8}$

Solution

$N-m g=\frac{m g}{2} \Rightarrow N=\frac{3 m g}{2}$
Now, work done $W=\vec{N} \vec{S}=\left(\frac{3 m g}{2}\right)\left(\frac{1}{2} g t^{2}\right)$
$\Rightarrow W=\frac{3 m g^{2} t^{2}}{4}$.

\#1330667

 the energy flux through it in the steady state is

A $90 W_{m}^{-2}$
B $\quad 200 W_{m}{ }^{-2}$
C $65 \mathrm{Wm}^{-2}$
D $120 W_{m}{ }^{-2}$

Solution

$\left(\frac{d Q}{d t}\right)=\frac{k A \Delta T}{l}$
$\Rightarrow \frac{1}{a}\left(\frac{d Q}{d t}\right)=\frac{(0.1)(900)}{1}=90 \mathrm{Wm}^{2}$.

\#1330704

 this tower in LOS(Line of Sight) mode? (Given : radius of earth $=6.4 \times 10^{6} \mathrm{~m}$).

A 80 km

B $\quad 48 \mathrm{~km}$

C $\quad 40 \mathrm{~km}$

D 65 km

Solution

Maximum distance upto which signal can be broadcasted is
$d_{\text {max }}=\sqrt{2 R h_{T}}+\sqrt{2 R h_{R}}$
where h_{R} and h_{R} are heights of transmitter tower and height of receiver respectively.
Putting all values -
$d_{\text {max }}=\sqrt{2 \times 6.4 \times 106}[\sqrt{104}+\sqrt{40}]$
on solving, $d_{\max }=65 \mathrm{~km}$.

A potentiometer wire $A B$ having length L and resistance $12 r$ is joined to a cell D of emf ϵ and internal resistance r. A cell C having emf $\epsilon / 2$ and internal resistance $3 r$ is connected. The length $A J$ at which the galvanometer as shown in fig. shows no deflection is

A $\frac{5}{12} L$
B $\quad \frac{11}{24} L$
C $\quad \frac{11}{12} L$
D $\frac{13}{24} L$

Solution

$i=\frac{\epsilon}{13 r}$
$\left(\frac{x}{L}-12 r\right)=\frac{\epsilon}{2}$
$\frac{\epsilon}{13}\left[\frac{X}{L} \cdot 12 r\right]=\frac{\epsilon}{2} \Rightarrow x=\frac{13 L}{24}$.

\#1330783

An insulating thin rod of length / as a x linear charge density $p(x)=\rho_{0} \frac{x}{\rho}$ on it. The rod is rotated about an axis passing through the origin $(x=0)$ and perpendicular to the rod. If the rod makes n rotations per second, then the time averaged magnetic moment of the rod is

A $\frac{\pi}{4} n \rho \beta^{3}$
B $n \rho \beta^{3}$

C $\pi n \rho /^{3}$
D $\quad \frac{\pi}{3} n \rho \beta^{3}$
Solution
$\because M=N I A$
$d q=\lambda d x$ and $A=\pi x^{2}$
$\int d m=\int(x)=\frac{\rho_{0 x}}{l} d x . \pi_{X}{ }^{2}$
$M=\frac{n \rho_{0} \pi}{l} \cdot \int_{0} / x^{3} \cdot d x=\frac{n \rho_{0} \pi}{l} \cdot\left[\frac{L^{4}}{4}\right]$
$M=\frac{n \rho_{0 \pi \beta}}{4}$ or $\frac{\pi}{4} n \rho \beta$.

\#1330803

Two guns A and B can fire bullets at speeds $1 \mathrm{~km} / \mathrm{s}$ and $2 \mathrm{~km} / \mathrm{s}$ respectively. From a point on a horizontal ground, they are fired in all possible directions. The ratio of
maximum areas covered by the bullets fired by the two guns, on the ground is

A $1: 2$

B $\quad 1: 4$

D $\quad 1: 16$
Solution
$R=\frac{u^{2} \sin 2 \theta}{g}$
$A=\pi R^{2}$
$A \propto R^{2}$
$A \propto u^{4}$
$\frac{A_{1}}{A_{2}}=\frac{u_{1}^{4}}{u_{2}^{4}}=\left[\frac{1}{2}\right]^{4}=\frac{1}{16}$.

\#1330842

A string of length 1 m and mass 5 g is fixed at both ends. The tension in the string is 8.0 N . The siring is set into vibration using an external vibrator of frequency 100 Hz . The separation between successive nodes on the string is close to__?

A $\quad 16.6 \mathrm{~cm}$

B $\quad 20.0 \mathrm{~cm}$

C $\quad 10.0 \mathrm{~cm}$

D $\quad 33.3 \mathrm{~cm}$

Solution

Velocity of wave on string
$V=\sqrt{\frac{T}{\mu}}=\sqrt{\frac{8}{5} \times 1000}=40 \mathrm{~m} / \mathrm{s}$
Now, wavelength of wave $\lambda=\frac{v}{n}=\frac{40}{100} m$
Separation b/w successive nodes, $\frac{1}{2}=\frac{20}{100} \mathrm{~m}$
$=20 \mathrm{~cm}$.

\#1330883

A train moves towards a stationary observer with speed $34 \mathrm{~m} / \mathrm{s}$. The train sounds a whistle and its frequency registered by the observer is f_{1}. If the speed of the train is
reduced to $17 \mathrm{~m} / \mathrm{s}$, the frequency registered is f_{2}. If speed of sound is $340 \mathrm{~m} / \mathrm{s}$, then the ratio f_{1} / f_{2} is __?

A $18 / 17$

B $19 / 18$

C $\quad 20 / 19$

D $\quad 21 / 20$

Solution

$f_{\text {app }}=f_{0}\left[\frac{v_{2} \pm v_{0}}{v_{2} \mp v_{s}}\right]$
$f_{1}=f_{0}\left[\frac{340}{340-34}\right]$
$f_{2}=f_{0}\left[\frac{340}{340-17}\right]$
$\frac{f_{1}}{f_{2}}=\frac{340-17}{340-34}=\frac{323}{306} \Rightarrow \frac{f_{1}}{f_{2}}=\frac{19}{18}$.

\#1330915

A $\quad 100 \mathrm{keV}$

B $\quad 500 \mathrm{keV}$

C 25 keV

D $\quad 1 \mathrm{keV}$
Solution
$\lambda=\frac{h}{p}\left\{\lambda=7.5 \times 10^{-12}\right\}$
$P=\frac{h}{\lambda}$
$K E=\frac{P^{2}}{2 m}=\frac{(h / \lambda)^{2}}{2 m}=\frac{\left\{\frac{6.6 \times 10^{-34}}{7.5 \times 10^{-12}}\right\}}{2 \times 9.1 \times 10^{-31}}$
$K E=25 \mathrm{KeV}$.

\#1330933

A homogeneous solid cylindrical roller of radius R and mass M is pulled on a cricket pitch by a horizontal force. Assuming rolling without slipping, angular acceleration of the cylinder is \qquad

A $\frac{3 F}{2 m R}$
B $\frac{F}{3 m R}$
C $\frac{2 F}{3 m R}$
D $\frac{F}{2 m R}$
Solution
$F R=\frac{3}{2} M R^{2} \alpha$
$\alpha=\frac{2 F}{3 M R}$.

\#1330964

A plano convex lens of refractive index μ_{1} and focal length f_{1} is kept in contact with another plano concave lens of refractive index μ_{2} and focal length f_{2}. If the radius of curvature of their spherical faces is R each and $f_{1}=2 f_{2}$, then μ_{1} and μ_{2} are related as

A $\mu_{1}+\mu_{2}=3$
B $2 \mu_{1}-\mu_{2}=1$
C $\quad 2 \mu_{2}-\mu_{1}=1$
D $\quad 3 \mu_{2}-\mu_{1}=1$
Solution

$$
\begin{aligned}
& \frac{1}{2 f_{2}}=\frac{1}{f_{1}}=\left(\mu_{1}-1\right)\left(\frac{1}{\infty}-\frac{1}{-R}\right) \\
& \frac{1}{f_{2}}=\left(\mu_{2}-1\right)\left(\frac{1}{-R}-\frac{1}{\infty}\right) \\
& \frac{\left(\mu_{1}-1\right)}{R}=\frac{\left(\mu_{2}-1\right)}{2 R} \\
& 2 \mu_{2}-\mu_{2}=1 .
\end{aligned}
$$

\#1330993

Two electric dipoles, A, B with respective dipole moments $\overrightarrow{d A}=-4 q \hat{a} \hat{j}$ and $\vec{d} B=-2 q \hat{a} \hat{j}$ placed on the x-axis with a separation R, as shown in the figure. The distance from A at which both of them produce the same potential is

A $\frac{\sqrt{2} R}{\sqrt{2}+1}$
B $\frac{R}{\sqrt{2}+1}$
$\begin{array}{ll}\mathrm{C} & \sqrt{2} R \\ \sqrt{2}-1\end{array}$
D $\frac{R}{\sqrt{2}-1}$
Solution
$V=\frac{4 q a}{(R+x)}=\frac{2 q a}{\left(x^{2}\right)}$
$\sqrt{2} x=R+x$
$x=\frac{R}{\sqrt{2}-1}$
dist $=\frac{R}{\sqrt{2}-1}+R=\frac{\sqrt{2} R}{\sqrt{2}-1}$.

\#1331021

10 V
 10 V

In the given circuit the cells have zero internal resistance. The currents (in Amperes) passing through resistance R_{1}, and R_{2} respectively, are \qquad $?$

A 2,2

B 0,1
C $\quad 1,2$
D 0.5,
Solution
$i_{1}=\frac{10}{20}=0.5 \mathrm{~A}$
$i_{2}=0$.

In the cube of side ' a ' shown in the figure, the vector from the central point of the face $A B O D$ to the central point of the face $B E F O$ will be

A $\frac{1}{2} a(\hat{i}-\hat{k})$
B $\frac{1}{2} a(\hat{j}-\hat{i})$
C $\frac{1}{2} a(\hat{k}-\hat{i})$
D $\quad \frac{1}{2} a(\hat{j}-\hat{k})$
Solution
$\vec{r}_{g}=\frac{a}{2} \hat{i}+\frac{a}{2} \hat{k}$
$\vec{r}_{H}=\frac{a}{2} \hat{j}+\frac{a}{2} \hat{k}$
$\vec{r} H^{-} \vec{r} g=\frac{a}{2}(\hat{j}-\hat{i})$.

\#1331085

O_{1}

O_{2}

$\mathrm{O}_{\varepsilon_{3}}$

Three Carnot engines operate in series between a heat source at a temperature T_{1} and a heat sink at temperature T_{4} (see figure). There are two other reservoirs at temperature T_{2}, and T_{3}, as shown, with $T_{2}>T_{2}>T_{3}>T_{4}$. The three engines are equally efficient if__?

A $T_{2}=\left(T_{1}^{2} T_{4}\right)^{1 / 3}: T_{3}=\left(T_{1} T_{4}^{2}\right)^{1 / 3}$
B $\quad T_{2}=\left(T_{1} T_{4}^{2}\right)^{1 / 3}: T_{3}=\left(T_{1}^{2} T_{4}\right)^{1 / 3}$
C $\quad T_{2}=\left(T_{1}^{3} T_{4}\right)^{1 / 4}: T_{3}=\left(T_{1} T_{4}^{3}\right)^{1 / 4}$
D $\quad T_{2}=\left(T_{1} T_{4}\right)^{1 / 2}: T_{3}=\left(T_{1}^{2} T_{4}\right)^{1 / 3}$

Solution

$t_{1}=1-\frac{T_{2}}{T_{1}}=1-\frac{T_{2}}{T_{2}}=1-\frac{T_{4}}{T_{3}}$
$\Rightarrow \frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{4}}=\frac{T_{4}}{T_{3}}$
$\Rightarrow T_{2}=\sqrt{T_{1} T_{3}}=\sqrt{T_{1} \sqrt{T_{2} T_{4}}}$
$T_{3}=\sqrt{T_{2} T_{4}}$
$T_{2}^{3 / 4}=\sqrt{T_{1}^{1 / 2}} T_{4}^{1 / 4}$
$T_{2}=T_{1}^{2 / 3} T_{4}^{1 / 3}$.

\#1329237

Two π and half σ bonds are present in:

A N_{2}^{+}
B $\quad N_{2}$
C O_{2}^{+}
D O_{2}

Solution

$N_{2}^{\oplus} \Longrightarrow B O=2.5 \Longrightarrow\left[\pi-\right.$ Bond $=2 \& \sigma-$ Bond $\left.=\frac{1}{2}\right]$
$N_{2} \Longrightarrow$ B.O. $=3.0 \Longrightarrow[\pi-$ Bond $=2 \& \sigma-$ Bond $=11]$
$O_{2}^{\oplus}=$ B.O. $\Longrightarrow 2.5 \Longrightarrow[\pi-$ Bond $=1.5 \& \sigma-$ Bond $=11]$
$O_{2} \Longrightarrow 2 \Longrightarrow[\pi-$ Bond $\Longrightarrow 1 \& \sigma-$ Bond $=11]$

\#1329275

The chemical nature of hydrogen preoxide is:

A oxidising and reducing agent in acidic medium, but not in basic medium.

B oxidising and reducing agent in both acidic and basic medium

C reducing agent in basic medium, but not in acidic medium
D oxidising agent in acidic medium, but not in basic medium.

Solution

$\mathrm{H}_{2} \mathrm{O}_{2}$ act as oxidisong agent and reducing agent in acidic medium as well as basic medium.
$\mathrm{H}_{2} \mathrm{O}_{2}$ Act as oxidant:
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{\oplus}+2 e^{\ominus} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ (In acidic medium)
$\mathrm{H}_{2} \mathrm{O}+2 e^{\ominus} \rightarrow 2 \mathrm{OH}^{\ominus}$ (In basic medium)
$\mathrm{H}_{2} \mathrm{O}_{2}$ Acts as reductant:-
$\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}^{+}+\mathrm{O}_{2}+2 e^{\ominus}$ (In acidic medium)
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{OH}^{\ominus} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+2 e^{\ominus}$ (in basic medium)

\#132934

Which dicarboxylic acid in presence of a dehydrating agent is least reactive to give an anhydride?

A

B

C

D

Solution

Adipic acid $\mathrm{CO}_{2} \mathrm{H}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CO}_{2} \mathrm{H} \xrightarrow[\text { agent }]{\text { dehydrating }} 7$ membered cyclic anhydride (Very unstable).

\#1329356

Which premitive unit cell has unequal edge lengths ($a \neq b \neq c$) and all axial angles different from 90 ?

A Tetragonal
B Hexagonal
C Monoclinic

D Triclinic

Solution

In Triclinic cell
$a \neq b \neq c \& \alpha \neq \beta \neq \gamma \neq 90^{\circ}$.

\#1329376

Wilkinson catalyst is:
$\mathrm{A} \quad\left[\left(P h_{3} P\right)_{3} R h C l\right]\left(E t=C_{2} H_{5}\right)$
B $\left.\quad\left[E t_{3} P\right)_{3} \mathrm{IrCl}\right]$
C $\left.\left[E t_{3} P\right)_{3} R h C l\right]$
D $\left.\quad\left[\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{IeCl}\right]$
Solution
Wilkinsion catalyst is $\left[\left(P h_{3} P\right)_{3} R h C l\right]$

\#1329406

The total number of isotopes of hydrogen and number of radioactive iostopes among them, respectively, are:

A $\quad 2$ and 0

B $\quad 3$ and 2
C 3 and 1
D $\quad 2$ and 1

Solution

Total number of isotopes of hydrogen is 3
$\Longrightarrow{ }_{2}^{1} H,{ }_{1}^{2} H$ or ${ }_{1}^{3} D,{ }_{1}^{3} H$ or ${ }_{1}^{3} T$
and only ${ }_{1}^{3} \mathrm{H}$ or ${ }_{1}^{3} T$ is an Radioactive element.

\#1329439

The major product of the following reaction is:

A

B

C

D

Solution

Example of E_{2} elimination and conjugated diene is formed with phenyl ring in conjugation which makes it very stable.
\#1329456
The total number of isomers for a square planar complex $\left[\mathrm{M}(\mathrm{F})(\mathrm{Cl})(\mathrm{SCN})\left(\mathrm{NO}_{2}\right)\right]$:
A 12
B 8

C $\quad 16$

D 4

Solution

The total number of isomer for a square planar complex $\left[M(F)(C l)(S C N)\left(\mathrm{NO}_{2}\right)\right]$ is 12 .

(3)

(3)

(3)

Hall-Heroult's process is given by:

A $\mathrm{Cr}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Cr}$
B $\quad \mathrm{Cu}^{2+}(a q)+\mathrm{H}_{2}(g) \rightarrow \mathrm{Cu}(s)+2 \mathrm{H}^{+}(a q)$

C
$\mathrm{ZnO}+\mathrm{C} \xrightarrow{\text { Coke, } 1673 \mathrm{~K}} \mathrm{Zn}+\mathrm{CO}$

D $\quad 2 \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 4 \mathrm{Al}+3 \mathrm{CO}_{2}$

Solution

In Hall-Heroult's process is given by
$2 \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 4 \mathrm{Al}+3 \mathrm{CO}_{2}$
$2 \mathrm{Al}_{2} \mathrm{O}_{3}(\ell) \rightleftharpoons 4 A l^{3+}(\ell)+6 O^{2 \ominus}(\ell)$
At cathode: $4 A l_{(\ell)}^{3+}+12 e^{\ominus} \rightarrow 4 A l(\ell)$
At Anode: $6 O_{(\ell)}^{2 \ominus} \rightarrow 2 O_{2}(g)+12 e^{\ominus}$
$3 \mathrm{C}+3 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}(\uparrow)$

\#1329701

The value of $\frac{K_{p}}{K_{c}}$ for the following reactions at $300 K$ are, respectively:
(At $300 \mathrm{~K}, R T=24.62 \mathrm{dm}^{3} \mathrm{~atm}_{\mathrm{mol}}{ }^{-1}$)
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$

A $\quad 1,24.61 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~mol}^{-1}, 606.0 \mathrm{dm}^{6} \mathrm{~atm}^{2} \mathrm{~mol}^{-2}$
B $\quad 1,4.1 \times 10^{-2} \mathrm{dm}^{-3} \mathrm{sm}^{-1} \mathrm{~mol}^{-1}, 606.0 \mathrm{dm}^{6} \mathrm{~atm}^{2} \mathrm{~mol}^{-2}$
C $\quad 606.0 \mathrm{dm}^{6} \mathrm{atn}^{6} \mathrm{~mol}^{-2}, 1.65 \times 10^{-3} \mathrm{dm}^{3} \mathrm{~atm}^{-2} \mathrm{~mol}^{-1}$
D $1,24.62 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~mol}^{-1}, 1.65 \times 10^{-3} \mathrm{dm}^{-6} \mathrm{~atm}^{-2} \mathrm{~mol}^{2}$

Solution

$\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g)$
$\frac{k_{p}}{k_{c}}=(R T)^{\Delta n_{g}}=(R T)^{o}=1$
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(g)$
$\frac{k_{p}}{k_{c}}=(R T)^{1}=24.62$
$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\frac{k_{p}}{k_{c}}=(R T)^{-2}=\frac{1}{(R T)^{2}}=1.65 \times 10^{-3}$

\#1329781

If dichloromethane (DCM) and water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ are used for differential extraction, which one of the following statements is correct ?
$D C M$ and $\mathrm{H}_{2} \mathrm{O}$ would stay as lower and upper layer respectively in the S.F.

B $\quad \mathrm{DCM}$ and $\mathrm{H}_{2} \mathrm{O}$ will be miscible clearly
C $\quad \mathrm{DCM}$ and $\mathrm{H}_{2} \mathrm{O}$ would stay as upper and lower layer respectively in the separating funnel (S.F.)

Solution

All Alkyl Halides are absolutely water insoluble.
All Alkyl Halides are dense as compared to water.
In a separating funnel upper layer is called layer-1 and the lower layer is called layer-2.
So the upper layer will be with less dense $\mathrm{H}_{2} \mathrm{O}$ and the lower layer will be denser $D C M$.
Hence option A is a correct answer.

\#1329795

The type of hybridisation and number of lone pair(s) of electrons of $X e$ in $X e O F_{4}$,respectively, are:

A $\quad s p^{3} d$ and 1
B $\quad s p^{3} d$ and 2
C $s p^{3} d^{2}$ and 1
D $s p^{3} d^{2}$ and 2

Solution

\#1329814

The metal used for making X-ray window is:

A $\quad M g$
B $\quad N a$
C $C a$
$\mathrm{D} B e$

Solution

Be Metal is used in x-ray window is due to transparent to x -rays.

Consider the given plots for a reaction obeying Arrhenius equation $\left(0^{\circ} C<T<300^{\circ} C\right)$: (k and E_{a} are rate constant and activation energy, respectively) Choose the correct option.

A Both I and II are wrong
B I is wrong but II is right
C Both I and II are correct

Solution

On increasing E_{a}, K decreases.

\#1329860

Water filled in two glasses A and B have $B O D$ values of 10 and 20 , respectively. The correct
statement regarding them, is:

A $\quad A$ is more polluted than B

B $\quad A$ is suitable for drinking, whereas B is not
C B is more polluted that A

D Both A and B are suitable for drinking

Solution

Two glasses " A " and " B " have $B O D$ values 10 and " 20 ", respectively.
Hence glasses " B " is more polluted than glasses " A ".
(2)

The increasing order of the $p K a$ values of the following compounds is:

A $D<A<C<B$

B $\quad B<C<D<A$
C
$C<B<A<D$
D $B<C<A<D$

Solution

Acidic strength is inversely proportional to $p K a$.

\#1329905

Liquids A and B form an ideal solution in the entire composition range. At $350 K$, the vapor pressures of pure A and pure B are $7 \times 10^{3} P a$ and $12 \times 10^{3} P a$, respectively. The composition of the vapor in equilibrium with a solution containing 40 mole percent of A at this temperature is:

A $\quad x_{A}=0.37, x_{B}=0.63$

B $\quad x_{A}=0.28 ; x_{B}=0.72$

C $x_{A}=0.76 ; x_{B}=0.24$

D $x_{A}=0.4 ; x_{B}=0.6$

Solution
$y_{A}=\frac{P_{A}}{P_{\text {Total }}}=\frac{P_{A}^{o} x_{A}}{P_{A}^{o} x_{A} \times P_{B}^{o} x_{B}}$
$=\frac{7 \times 10^{3} \times 0.4}{7 \times 10^{3} \times 0.4+12 \times 10^{3} \times 0.6}$
$=\frac{2.8}{10}=0.28$
$y_{B}=0.72$

\#1329969

Consider the following processes
$Z n^{2+}+2 r^{-} \rightarrow Z n(s) ; E^{o}=-0.76 A$
$C a^{2+}+2 e^{-} \rightarrow C a(s) ; E^{o}=-2.87 V$
$M g^{2+}+2 e^{-} \rightarrow M g(s) ; E^{o}=-2.36 V$
$N i^{2+}+2 e^{-} \rightarrow N i(s) ; E^{o}=-0.25 V$
The reducing power of the metals increases in the order:

A $\quad C a<Z n<M g<N i$

B $\quad N i<Z n<M g<C a$
C $\quad Z n<M g<N i<C a$
D $\quad C a<M g<Z n<N i$

Solution

Higher the oxidation potential better will be reducing power.

A

B

c

D

Solution
 $\xrightarrow{\text { (i) } \mathrm{AlCl}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)}$

$\xrightarrow{\text { imarch }} \widehat{O}\rangle$

\#1329999

The electronegativity of aluminium is similar to:

A Boron
B Carbon
C Lithium
D Berylium

Solution

$E . N$. of $A l=(1.5) \approx B e(1.5)$

	\#1330040
	 II

The decreasing order of ease of alkaline hydrolysis for the following esters is:

A $\quad I V>I I>I I I>I$
B $\quad I I I>I I>I>I V$
C $\quad I I I>I I>I V>I$

Solution

More is the electrophilic character of carbonyl group of ester faster is the alkaline hydrolysis.

\#1330062

A process has $\Delta H=200 \mathrm{~J} \mathrm{~mol}^{-1}$ and $\Delta S=40 \mathrm{JK} \mathrm{mol}^{-1}$. Out of the values given above which the process will be sponteneous:

A $5 K$

B $4 K$

C $\quad 20 K$

D $\quad 12 K$
Solution
$\Delta G=\Delta H-T \Delta S$
$T=\frac{\Delta H}{\Delta S}=\frac{200}{40}=5 K$

\#1330082

Which of the graphs shown below does not represent the relationship between incident light and the electron ejected form metal surface?

A

B

C

D

Solution
$E=W+\frac{1}{2} m v^{2}$
$K . E .=h v-4 v_{0}$
$K . E .=h v+\left(-h v_{0}\right)$
$y=m x+\underline{C}$

\#1330098

Which of the following is not and example of heterogeneous catalytic reaction?

A Ostwald's process

B Haber's process
C Combustion of coal

D Hydrogenation of vegetable oils

Solution
Then is no catalyst is required for combustion of coal.

\#1330119

The effect of lanthanoid contraction in the lanthanoid series of elements by and large means:

A
decrease in both atomic and ionic radii

B increase in atomic radii and decrease in ionic radii
C increase in both atomic and ionic radii

D decrease in atomic radii and increase in ionic radii

Solution

Due to lanthanoid contraction both atomic radii and ionic radii decrease decrease gradually in the lanthanoid series.
\#1330137

The major product formed in the reaction given below will be:

A

B

C

D

E

Solution
Answer should be

\#1330196
The correct structure of product ' P ' in the following reaction is:
$\mathrm{Asn}-\mathrm{Ser}+\underset{(\text { excess })}{\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2} \mathrm{O}} \xrightarrow{\mathrm{NEt}_{3}} P$
A

B

C

D

Asn - Ser $+\left(\mathrm{CH}_{3}\right.$ ceccss $\mathrm{CO}_{2} \mathrm{O} \xrightarrow{\mathrm{NEt}_{3}} \mathrm{P}$
P is

\#1330225

Which hydrogen is compound (E) is easily replaceable during bromination reaction in presence of light?
$\underset{\delta}{\mathrm{CH}_{3}}-\underset{\gamma}{\mathrm{CH}_{2}}-\underset{\beta}{\mathrm{CH}}=\underset{\alpha}{\mathrm{CH}_{2}}$

A $\quad \beta$-hydrogen
B
γ-hydrogen

C δ - hydrogen
D $\quad \alpha$-hydrogen

Solution

$\gamma-H y d r o g e n$ is easily replacable during bromination reaction in presence of light, because Allylic substitution is being preferred.

So, Option B is correct

\#1330237

The major product ' X ' formed in the following reaction is:

A

B

C

D

Solution
NaBH_{4} cannot reduce the Ester Groups and double bonds, but can reduce keto-group to enol-group .So, The reactant reacts with NaBH and -OH is formed .Then in the 2nd Step , $-O M e$ is substituted and gives the product same as in the 1st step.

So, Option D is correct

\#1330265

A mixture of 100 m mol of $\mathrm{Ca}(\mathrm{OH})_{2}$ and $2 g$ of sodium sulphate was dissolved in water and the volume was made up to 100 mL . The mass of calcium sulphate formed and the concentration of OH^{-}in resulting solution, respectively, are:
(Molar mass of $\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Na}_{2} \mathrm{SO}_{4}$ and CaSO_{4} are 74,143 and $136 \mathrm{~g} \mathrm{~mol}^{-1}$, respectively; $\mathrm{K}_{\text {sp }}$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ is 5.5×10^{-6})

A $\quad 1.9 \mathrm{~g}, 0.14 \mathrm{~mol} L^{-1}$
B $\quad 13.6 \mathrm{~g}, 0.14 \mathrm{~mol} L^{-1}$

C $\quad 1.9 \mathrm{~g}, 0.28 \mathrm{~mol} \mathrm{~L} \mathrm{~L}^{-1}$
D $\quad 13.6 \mathrm{~g}, 0.28 \mathrm{~mol} \mathrm{~L}^{-1}$
Solution
$\mathrm{Ca}\left(\mathrm{OH}_{2}\right)+\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{NaOH}$
$100 \mathrm{mmol} 14 \mathrm{~m} \mathrm{~mol} \quad----\quad---$
$----\quad----\quad 14 \mathrm{mmol} 28 \mathrm{mmol}$
$\mathrm{w}=14 \times 10^{-3} \times 136=1.9 \mathrm{~g}$
$[\mathrm{OH}]^{-}=\frac{28}{100}=0.28$

\#1329451

Consider a triangular plot $A B C$ with sides $A B=7 \mathrm{~cm}, B C=5 \mathrm{~cm}$ and $C A=6 \mathrm{~cm}$. A vertical lamp-post at the mid point D of $A C$ subtends an angle 30°. The height (in m) of the lamp-post is?

A $7 \sqrt{3}$
B $\frac{2}{3} \sqrt{21}$
C $\frac{3}{2} \sqrt{21}$
D $2 \sqrt{21}$

Solution
$\mathrm{BD}=h \cot 30^{\circ}=h \sqrt{3}$
So, $\left.7^{2}+5^{2}=2(h \sqrt{3})^{2}+3^{2}\right)$
$\Rightarrow 37=3 h^{2}+9$.
$\Rightarrow 3 h^{2}=28$
$\Rightarrow h=\sqrt{\frac{28}{3}}=\frac{2}{3} \sqrt{21}$.

\#1329468
Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a function such that $f(x)=x^{3}+x^{2} f^{\prime}(1)+x f^{\prime \prime}(2)+f^{\prime \prime \prime}(3), x \in R$. Then $f(2)$ equal ?

A 8
B $\quad-2$
C $\quad-4$

D 30
Solution
$f(x)=x^{3}+x^{2} f^{\prime}(1)+x f^{\prime \prime}(2)+f^{\prime \prime}(3)$
$\Rightarrow f^{\prime}(x)=3 x^{2}+2 x f^{\prime}(1)+f^{\prime \prime}(2) \cdot(1)$
$\Rightarrow f^{\prime \prime}(x)=6 x+2 f^{\prime}(1) . .(2)$
$\Rightarrow f^{\prime \prime}(x)=6$.(3)
Put $x=1$ in equation (1):
$f^{\prime}(1)=3+2 f^{\prime}(1)+f^{\prime \prime}(2) . .(4)$
Put $x=2$ in equation (2):
$f^{\prime \prime}(2)=12+2 f^{\prime}(1) \cdot(5)$
from equation (4) \& (5):
$-3-f^{\prime}(1)=12+2 f^{\prime}(1)$
$\Rightarrow 3 f^{\prime}(1)=-15$
$\Rightarrow f^{\prime}(1)=-5$
$\Rightarrow f^{\prime \prime}(2)=2 \ldots(2)$
put $x=3$ in equation (3):
$f^{\prime \prime}(3)=6$
$\therefore f(x)=x^{3}-5 x^{2}+2 x+6$
$f(2)=8-20+4+6=-2$.

\#1329476

If a circle C passing through the point $(4,0)$ touches the circle $x^{2}+y^{2}+4 x-6 y=12$ externally at the point $(1,-1)$, then the radius of C is?
A $\sqrt{57}$
B 4
C $2 \sqrt{5}$
D 5
Solution
$x^{2}+y^{2}+4 x-6 y-12=0$
Equation of tangent at (1, -1)
$x-y+2(x+1)-3(y-1)-12=0$
$3 x-4 y-7=0$
\therefore Equation of circle is
$\left(x^{2}+y^{2}+4 x-6 y-12\right)+\lambda(3 x-4 y-7)=0$
It passes through $(4,0)$:
$(16+16-12)+\lambda(12-7)=0$
$\Rightarrow 20+\lambda(5)=0$
$\Rightarrow \lambda=-4$
$\therefore\left(x^{2}+y^{2}+4 x-6 y-12\right)-4(3 x-4 y-7)=0$
or $x^{2}+y^{2}-8 x+10 y+16=0$
Radius $=\sqrt{16+25-16}=5$.

\#1329487

In a class of 140 students numbered 1 to 140, all even numbered students opted mathematics course, those whose number is divisible by 3 opted Physics course and those whose number is divisible by 5 opted Chemistry course. Then the number of students who did not option for any of the three courses is?

A 102

B 42

D 38

Solution

Let $n(A)=$ number of students opted Mathematics $=70$,
$n(B)=$ number of students opted Physics $=46$,
$n(C)=$ number of students opted Chemistry $=28$,
$n(A \cap B)=23$,
$n(B \cap C)=9$,
$n(A \cap C)=14$,
$n(A \cap B \cap C)=4$,
Now $n(A \cup B \cup C)$
$=n(A)+n(B)+n(C)-n(A \cap B)-n(B \cap C)-n(A \cap C)+n(A \cap B \cap C)$
$=70+46+28-23-9-14+4=102$
Si number of students not opted for any course $=$ Total $-n(A \cap B \cap C)$
$=140-102=38$.

\#1329496

The sum of all two digit positive numbers which when divided by 7 yield 2 or 5 as remainder is?

A 1365

B 1256
C
1465

D 1356
Solution
$\sum_{r=2}^{13}(7 r+2)=7 \cdot \frac{2+13}{2} \times 6+2 \times 12$
$r=2$
$=7 \times 90+24=654$
$\sum_{r=1}^{13}(7 r+5)=7\left(\frac{1+13}{2}\right) \times 13+5 \times 13=702$
Total $=654+702=1356$.

\#1329603

Let $\vec{a}=2 \hat{j}+\lambda_{1} \hat{j}+3 \hat{k}, \vec{b}=4 \hat{j}+\left(3-\lambda_{2}\right) \hat{j}+6 \hat{k}$ and $\vec{c}=3 \hat{j}+6 \hat{j}+\left(\lambda_{3}-1\right) \hat{k}$ be three vectors such that $\vec{b}=2 \vec{a}$ and \vec{a} is perpendicular to \vec{c}. Then a possible value of $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ is?

A $\quad\left(\frac{1}{2}, 4,-2\right)$
B $\left(-\frac{1}{2}, 4,0\right)$
C $(1,3,1)$

D $(1,5,1)$

Solution

$4 \hat{i}+\left(3-\lambda_{2}\right) \hat{j}+6 \hat{k}=4 \hat{i}+2 \lambda_{1 j}+6 \hat{k}$
$\Rightarrow 3-\lambda_{2}=2 \lambda_{1} \Rightarrow 2 \lambda_{1}+\lambda_{2}=3$ (1)
Given $\vec{a} \cdot{ }_{c}=0$
$\Rightarrow 6+6 \lambda_{1}+3\left(\lambda_{3}-1\right)=0$
$\Rightarrow 2 \lambda_{1}+\lambda_{3}=-1(2)$
$\operatorname{Now}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\left(\lambda_{1}, 3-2 \lambda_{1},-1-2 \lambda_{1}\right)$
Now check the options, option (2) is correct.

\#1329607

The equation of a tangent to the hyperbola $4 x^{2}-5 y^{2}=20$ parallel to the line $x-y=2$ is?

A $x-y+9=0$
B $\quad x-y+7=0$

C $x-y+1=0$

D $\quad x-y-3=0$
Solution
Hyperbola $\frac{x^{2}}{5}-\frac{y^{2}}{4}=1$
Slope of tangent $=1$
Equation of tangent $y=x \pm \sqrt{5-4}$
$\Rightarrow y=x \pm 1$
$\Rightarrow y=x+1$ or $y=x-1$.

\#1329615

If the area enclosed between the curves $y=k_{x}{ }^{2}$ and $x=k_{y}{ }^{2},(k>0)$, is 1 square unit. Then k is?
$\begin{array}{ll}\text { A } & \frac{1}{\sqrt{3}}\end{array}$
B $\frac{2}{\sqrt{3}}$
C $\frac{\sqrt{3}}{2}$
D $\sqrt{3}$

Solution

Area bounded by $y^{2}=4 a x \& x^{2}=4 b y, a, b \neq 0$ is $\left|\frac{16 a b}{3}\right|$
by using formula: $4 a=\frac{1}{k}=4 b, k>0$
Area $=\left|\frac{16 \cdot \frac{1}{4 k} \cdot \frac{1}{4 k}}{3}\right|=1$
$\Rightarrow k^{2}=\frac{1}{3}$
$\Rightarrow k=\frac{1}{\sqrt{3}}$.

Let $f(x)\left\{\begin{array}{cc}\max \left\{|x|, x^{2}\right\}, & |x| \leq 2 \\ 8-2|x|, & 2<|x| \leq 4\end{array}\right.$
Let S be the set of points in the interval $(-4,4)$ at which f is not differentiable. Then S ?

A Is an empty set
B Equals $\{-2,-1,1,2\}$
C Equals $\{-2,-1,0,1,2\}$
D Equals $\{-2,2\}$
Solution

$$
\begin{array}{cl}
8+2 x, & -4 \leq x<-2 \\
x^{2}, & -2 \leq x \leq-1
\end{array}
$$

$f(x)=\left\{\begin{array}{cl}x^{2}, & \\ |x|,-1<x<1 \\ x^{2}, 1 \leq x \leq 2 \\ 8-2 x, & 2<x \leq 4\end{array}\right.$
$f(x)$ is not differentiable at $x=\{-2,-1,0,1,2\}$
$\Rightarrow S=\{-2,-1,0,1,2\}$.

\#1329642
If the parabolas $y^{2}=4 b(x-c)$ and $y^{2}=8 a x$ have a common normal, then which one of the following is a valid choice for the ordered triad (a, b, c).

A $(1,1,0)$
B $\quad\left(\frac{1}{2}, 2,3\right)$
C $\quad\left(\frac{1}{2}, 2,0\right)$
D $\quad(1,1,3)$
Solution

Normal to these two curves are
$y=m(x-c)-2 b m-b m^{3}$,
$y=m x-4 a m-2 a m^{3}$
If they have a common normal
$(c+2 b) m+b m^{3}=4 a m+2 a m^{3}$
Now $(4 a-c-2 b) m=(b-2 a) m^{3}$
We get all options are correct for $m=0$
(common normal x-axis)
Ans. (1), (2), (3), (4)
Remark:
If we consider question as
If the parabolas $y^{2}=4 b(x-c)$ and $y^{2}=8 a x$ have a common normal other than x-axis, then which one of the following is a valid choice for the ordered traid (a, b, c ?
When $m \neq 0:(4 a-c-2 b)=(b-2 a) m^{2}$
$m^{2}=\frac{c}{2 a-b}-2>0 \Rightarrow \frac{c}{2 a-b}>2$
Now according to options, option 4 is correct.

\#1329652

The sum of all values of $\theta \in\left(0, \frac{\pi}{2}\right)$ satisfying $\sin ^{2} \theta+\cos ^{4} 2 \theta=\frac{3}{4}$ is?

A $\frac{\pi}{2}$

B $\quad \pi$

C $\frac{3 \pi}{8}$
D $\frac{5 \pi}{4}$

Solution

$\sin ^{2} \theta+\cos ^{4} 2 \theta=\frac{3}{4}, \theta \in\left(0, \frac{\pi}{2}\right)$
$\Rightarrow 1-\cos ^{2} 2 \theta+\cos ^{4} 2 \theta=\frac{3}{4}$
$\Rightarrow 4 \cos ^{4} 2 \theta-4 \cos ^{2} 2 \theta+1=0$
$\Rightarrow\left(2 \cos ^{2} 2 \theta-1\right)^{2}=0$
$\Rightarrow \cos ^{2} 2 \theta=\frac{1}{2}=\cos ^{2} \frac{\pi}{4}$
$\Rightarrow 2 \theta=n \pi \pm \frac{\pi}{4}, n \in I$
$\Rightarrow \theta=\frac{n \pi}{2} \pm \frac{\pi}{8}$
$\Rightarrow \theta=\frac{\pi}{8}, \frac{\pi}{2}-\frac{\pi}{8}$
Sum of solutions $\frac{\pi}{2}$.

\#1329664

Let z_{1} and z_{2} be any two non-zero complex numbers such that $3\left|z_{1}\right|=4\left|z_{2}\right|$. If $z=\frac{3 z_{1}}{2 z_{2}}+\frac{2 z_{2}}{3 z_{1}}$ then?

A

$$
|z|=\frac{1}{2} \sqrt{\frac{17}{2}}
$$

B
$\operatorname{Re}(z)=0$
c
$|z|=\sqrt{\frac{5}{2}}$

Solution

Bonus.
$3\left|z_{1}\right|=4\left|z_{2}\right|$
$\Rightarrow \frac{\left|z_{1}\right|}{\left|z_{2}\right|}=\frac{4}{3}$
$\Rightarrow \frac{\left|3 z_{1}\right|}{\left|2 z_{2}\right|}=2$
Let $\frac{3 z_{1}}{2 z_{2}}=a=2 \cos \theta+2 i \sin \theta$
$z=\frac{3 z_{1}}{2 z_{2}}+\frac{2 z_{2}}{3 z_{1}}=a+\frac{1}{a}$
$=\frac{5}{2} \cos \theta+\frac{3}{2} i \sin \theta$
Now all options are incorrect
Remark
There is a misprint in the problem actual problem should be:
"Let z_{1} and z_{2} be any non-zero complex number such that $3\left|z_{1}\right|=2\left|z_{2}\right|$.
If $z=\frac{3 z_{1}}{2 z_{2}}+\frac{2 z_{2}}{3 z_{1}}$, then"
Given
$3\left|z_{1}\right|=2\left|z_{2}\right|$
Now $\left|\frac{3 z_{1}}{2 z_{2}}\right|=1$
Let $\frac{3 z_{1}}{2 z_{2}}=a=\cos \theta+i \sin \theta$
$z=\frac{3 z_{1}}{2 z_{2}}+\frac{2 z_{2}}{3 z_{1}}$
$=a+\frac{1}{a}=2 \cos \theta$
$\therefore \operatorname{lm}(z)=0$
Now option (4) is correct.

\#1329673

If the system of equations $x+y+z=5, x+2 y+3 z=9, x+3 y+\alpha z=\beta$ has infinitely many solutions, then $\beta-\alpha$ equals?

A 5
B $\quad 18$

C $\quad 21$
D 8
Solution
$D=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & \alpha\end{array}\right|=\left|\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & \alpha-1\end{array}\right|=(\alpha-1)-4=(\alpha-5)$
for infinite solutions $D=0 \Rightarrow \alpha=5$
$D_{x}=0 \Rightarrow\left|\begin{array}{ccc}5 & 1 & 1 \\ 9 & 2 & 3 \\ \beta & 3 & 5\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}0 & 0 & 1 \\ -1 & -1 & 3 \\ \beta-15 & -2 & 5\end{array}\right|=0$
$\Rightarrow 2+\beta-15=0$
$\Rightarrow \beta-13=0$
on $\beta=13$ we get $D_{y}=D_{z}=0$
$\alpha=5, \beta=13$.

\#1329679

The shortest distance between the point $\left(\frac{3}{2}, 0\right)$ and the curve $y=\sqrt{x},(x>0)$ is?

A $\frac{\sqrt{5}}{2}$
B $\frac{5}{4}$
C $\frac{3}{2}$
D $\frac{\sqrt{3}}{2}$
Solution
Let points $\left(\frac{3}{2}, 0\right),\left(t^{2}, t\right) t>0$
Distance $=\sqrt{t^{2}+\left(t^{2}-\frac{3}{2}\right)^{2}}$
$=\sqrt{t^{2}-2 t^{2}+\frac{9}{4}}=\sqrt{\left(t^{2}-1\right)^{2}+\frac{5}{4}}$
So minimum distance is $\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{2}$.

\#1329688

Consider the quadratic equation $(c-5) x^{2}-2 c x+(c-4)=0, c \neq 5$. Let S be the set of all integral values of c for which one root of the equation lies in the interval (0,2) and its other root lies in the interval $(2,3)$. Then the number of elements in S is?

A 11

B $\quad 18$

C 10

D 12
Solution

Let $f(x)=(c-5) c^{2}-2 c x+c-4$
$\therefore f(0) f(2)<0 .(1)$
$\& f(2) f(3)<0(2)$
from (1) \& (2)
$(c-4)(c-24)<0$
$\&(c-24)(4 c-49)<0$
$\Rightarrow \frac{49}{4}<c<24$
$\therefore s=\{13,14,15, \ldots . .23\}$
Number of elements in set $\mathrm{S}=11$.

\#1329702

$\sum_{i=1}^{20}\left|\frac{{ }^{20} C_{i-1}}{{ }^{20} C_{i}+20 C_{i-1}}\right|=\frac{k}{21}$, then k equals?

A 200
B 50
C 100
D 400
Solution
$\sum_{i=1}^{20}\left|\frac{{ }^{20} C_{i-1}}{{ }^{20} C_{i}+{ }^{20} C_{i-1}}\right|^{3}=\frac{k}{21}$
$\Rightarrow \sum_{i=1}^{20}\left|\frac{{ }^{20} C_{i-1}}{{ }^{21} C_{i}}\right|^{3}=\frac{k}{21}$
$\Rightarrow \sum_{i=1}^{20}\left(\frac{i}{21}\right)^{2}=\frac{k}{21}$
$\Rightarrow \frac{1}{(21)^{2}}\left[\frac{20(21)}{2}\right]^{2}=\frac{k}{21}$
$\Rightarrow 100=k$.
\#1329716
Let $d \in R$, and $A=\left[\begin{array}{ccc}-2 & 4+d & (\sin \theta)-2 \\ 1 & (\sin \theta)+2 & d \\ 5 & (2 \sin \theta)-d & (-\sin \theta)+2+2 d\end{array}\right], \theta \in[0,2 \pi]$. If the minimum value of $\operatorname{det}(A)$ is 8 , then a value of d is?

A $\quad-7$
B $2(\sqrt{2}+2)$
C -5
D $2(\sqrt{2}+1)$
Solution

$\operatorname{det} A=|$| -2 | $4+d$ | $\sin \theta-2$ |
| :---: | :---: | :---: |
| 1 | $\sin \theta+2$ | d |
| 5 | $2 \sin \theta-d$ | $-\sin \theta+2+2 d$ |

$\left(R_{1} \rightarrow R_{1}+R_{3}-2 R_{2}\right)$
$=\left|\begin{array}{ccc}1 & 0 & 0 \\ 1 & \sin \theta+2 & d \\ 5 & 2 \sin \theta-d & 2+2 d-\sin \theta\end{array}\right|$
$=(2+\sin \theta)(2+2 d-\sin \theta)-d(2 \sin \theta-d)$
$=4+4 d-2 \sin \theta+2 \sin \theta+2 d \sin \theta-\sin ^{2} \theta-2 d \sin \theta+d^{2}$
$=d^{2}+4 d+4-\sin ^{2} \theta$
$=(d+2)^{2}-\sin ^{2} \theta$
For a given d , minimum value of $\operatorname{det}(A)=(d+2)^{2}-1=8$
$\Rightarrow d=1$ or -5 .

\#1329720

If the third term in the binomial expansion of $\left(1+x^{\log _{2} x}\right)^{5}$ equals 2560 , then a possible value of x is?

A $2 \sqrt{2}$
B $\quad \frac{1}{8}$
C $\quad 4 \sqrt{2}$
D $\frac{1}{4}$

Solution

$\left(1+x^{\log _{2} x}\right)^{5}$
$T_{3}={ }^{5} C_{2} \cdot\left(x^{\log _{2} x}\right)^{2}=2560$
$\Rightarrow 10 \cdot x^{2 \log _{2} x}=2560$
$\Rightarrow x^{2 \log _{2} x}=256$
$\Rightarrow 2\left(\log _{2} x\right)^{2}=\log _{2} 256$
$\Rightarrow 2\left(\log _{2} x\right)^{2}=8$
$\Rightarrow\left(\log _{2} x\right)^{2}=4$
$\Rightarrow \log _{2} x=2$ or -2
$x=4$ or $\frac{1}{4}$.

\#1329726

If the line $3 x+4 y-24=0$ intersects the x-axis at the point A and the y-axis at the point B, then the incentre of the triangle $O A B$, where O is the origin, is?

A $(3,4)$
B $\quad(2,2)$

C
$(4,4)$

D $(4,3)$

Solution

Line intersects the x-axis at $x=8, y=0$
$\Rightarrow A=(8,0)$

Line intersects the y-axis at $x=0, y=6$
$\Rightarrow B=(0,6)$

Incenter of triangle OAB $=\left(\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}\right),\left(\frac{a y_{1}+b y_{2}+c y_{3}}{a+b+c}\right)$

Where $O=\left(x_{1}, y_{1}\right)=(0,0), A=\left(x_{2}, y_{2}\right)=(8,0), B=\left(x_{3}, y_{3}\right)=(0,6)$
$\Rightarrow A B=10, O B=6, O A=8$
\Rightarrow Incenter $=\left(\frac{10.0+6.8+8.0}{10+8+6}, \frac{10.0+6.0+8.6}{10+8+6}\right)$
\Rightarrow incenter $=(2,2)$
\#1329732
The mean of five observations is 5 and their variance is 9.20 . If three of the given five observations are 1,3 and 8 , then a ratio of other two observations is?

A $4: 9$
B $6: 7$

C $5: 8$

D $10: 3$

Solution

Let two observations are $x_{1} \& x_{2}$
mean $=\frac{\sum x_{i}}{5}=5 \Rightarrow 1+3+8+x_{1}+x_{2}=25$
$\Rightarrow x_{1}+x_{2}=13$.(1)
variance $\left(\sigma^{2}\right)=\frac{\sum x_{i}^{2}}{5}-25=9.20$
$\Rightarrow \Sigma x_{i}^{2}=171$
$\Rightarrow x_{1}^{2}+x_{2}^{2}=97$..(2)
by $(1) \&(2)$
$\left(x_{1}+x_{2}\right)^{2}-2 x_{1} x_{2}=97$
or $x_{1} x_{2}=36$
$\therefore x_{1}: x_{2}=4: 9$.

\#1329741

A point P moves on the line $2 x-3 y+4=0$. If $Q(1,4)$ and $R(3,-2)$ are fixed points, then the locus of the centroid of $\Delta \mathrm{PQR}$ is a line?

A Parallel to x-axis
B With slope $\frac{2}{3}$
C With slope $\frac{3}{2}$

Solution

Let the centroid of $\triangle \mathrm{PQR}$ is $(\mathrm{h}, \mathrm{k}) \& \mathrm{P}$ is (α, β), then
$\frac{\alpha+1+3}{3}=h$ and $\frac{\beta+4-2}{3}=k$
$\alpha=(3 h-4) \quad \beta=(3 k-4)$
Point $P(\alpha, \beta)$ lies on line $2 x-3 y+4=0$
$\therefore 2(3 h-4)-3(3 k-2)+4=0$
\Rightarrow locus is $6 x-9 y+2=0$.
\#1329756
If $\frac{d y}{d x}+\frac{3}{\cos ^{2} x} y=\frac{1}{\cos ^{2} x}, x \in\left(\frac{-\pi}{3}, \frac{\pi}{3}\right)$, and $y\left(\frac{\pi}{4}\right)=\frac{4}{3}$, then $y\left(-\frac{\pi}{4}\right)$ equals?

A $\frac{1}{3}+e^{6}$
B $\quad \frac{1}{3}$
C $-\frac{4}{3}$
D $\frac{1}{3}+e^{3}$
Solution
$\frac{d y}{d x}+3 \sec ^{2} x \cdot y=\sec ^{2} x$
I.F. $=e^{3 \int \sec ^{2} x d x}=e^{3 \tan x}$
or $y \cdot e^{3 \tan x}=\int \sec ^{2} x \cdot e^{2 \tan x} d x$
or $y \cdot e^{3 \tan x}=\frac{1}{3} e^{3 \tan x+C}$.(1)
Given
$y\left(\frac{\pi}{4}\right)=\frac{4}{3}$
$\therefore \frac{4}{3} \cdot e^{3}=\frac{1}{3} e^{3}+C$
$\therefore C=e^{3}$
Now put $x=-\frac{\pi}{4}$ in equation (1)
$\therefore y \cdot e^{-3}=\frac{1}{3} e^{-3}+e^{3}$
$\therefore y=\frac{1}{3}+e^{6}$
$\therefore y\left(-\frac{\pi}{4}\right)=\frac{1}{3}+e^{6}$.

\#1329765

The plane passing through the point $(4,-1,2)$ and parallel to the lines $\frac{x+2}{3}=\frac{y-2}{-1}=\frac{z+1}{2}$ and $\frac{x-2}{1}=\frac{y-3}{2}=\frac{z-4}{3}$ also passes through the point.
A $(-1,-1,-1)$
B $\quad(-1,-1,1)$
C $(1,1,-1)$
D $(1,1,1)$
Solution

Let \vec{n} be the normal vector to the plane passing through $(4,-1,2)$ and parallel to the lines $L_{1} \& L_{2}$
then $\vec{n}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 2 \\ 1 & 2 & 3\end{array}\right|$
$\therefore \vec{n}=-7 \hat{i}-7 \hat{j}+7 \hat{k}$
\therefore Equation of plane is
$-1(x-4)-1(y+1)+1(z-2)=0$
$\therefore x+y-z-1=0$
Now check options.
\#1329776
Let $I=\int_{a}^{b}\left(x^{4}-2 x^{2}\right) d x$. If I is minimum then the ordered pair (a, b) is?

A $(-\sqrt{2}, 0)$
B $(-\sqrt{2}, \sqrt{2})$

C $(0, \sqrt{2})$
D $\quad(\sqrt{2},-\sqrt{2})$
Solution
Let $f(x)=x^{2}\left(x^{2}-2\right)$
As long as $f(x)$ lie below the x-axis, definite integral will remain negative,
so correct value of (a, b) is $(-\sqrt{2}, \sqrt{2})$ for minimum of l.

\#1329787

If $5,5 r, 5 r^{2}$ are the lengths of the sides of a triangle, then r cannot be equal to?

A $\frac{3}{2}$
B $\frac{3}{4}$
C $\quad \frac{5}{4}$
D $\frac{7}{4}$

Solution

$5,5 r, 5 r^{2}$ sides of triangle,
$5+5 r>5 r^{2} \quad \ldots$ (1)
$5+5 r^{2}>5 r \quad \ldots$ (2)
$5 r+5 r^{2}>5 \quad \ldots$ (3)
From (1) $r^{2}-r-1<0$,
$\left.\left[r-\left(\frac{1+\sqrt{5}}{2}\right)\right] r-\left(\frac{1-\sqrt{5}}{2}\right)\right]<0$
$r \in\left(\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right)$
from (2),
$r^{2}-r+1>0 \Rightarrow r \in R$
from (3),
$r^{2}+r-1>0$
So, $\left(r+\frac{1+\sqrt{5}}{2}\right)\left(r+\frac{1-\sqrt{5}}{2}\right)>0$
$r \in\left(-\infty,-\frac{1+\sqrt{5}}{2}\right) \cup\left(-\frac{1-\sqrt{5}}{2}, \infty\right)$
from (4), (5), (6),
$r \in\left(\frac{-1+\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right)$

\#1329794

Consider the statement: " $P(n): n^{2}-n+41$ is prime". Then which one of the following is true?

A $\quad P_{(5)}$ is false but $P_{(3)}$ is true
B Both $P_{(3)}$ and $P_{(5)}$ are false
C $\quad P_{(3)}$ is false but $P_{(5)}$ is true
D Both $P_{(3)}$ and $P_{(5)}$ are true

Solution

$P(n): n^{2}-n+41$ is prime
$P(5)=61$ which is prime
$P(3)=47$ which is also prime.

\#1329805

Let A be a point on the line $\vec{r}^{\prime}=(1-3 \mu) \hat{i}^{+}+(\mu-1) \hat{j}+(2+5 \mu) \hat{k}$ and $B(3,2,6)$ be a point in the space. Then the value of μ for which the vector $A B$ is parallel to the plane $x-4 y+3 z=1$ is?

A $\frac{1}{2}$
B $-\frac{1}{4}$
C $\frac{1}{4}$
D $\quad \frac{1}{8}$

Solution

Let point A is
$(1-3 \mu) \hat{i}+(\mu-1) \hat{j}+(2+5 \mu) \hat{k}$
and point B is $(3,2,6)$
then $\overline{A B}=(2+3 \mu) \hat{i}_{i}+(3-\mu) \hat{j}+(4-5 \mu) \hat{k}$
which is parallel to the plane $x-4 y+3 z=1$
$\therefore 2+3 \mu-12+4 \mu+12-15 \mu=0$
$8 \mu=2$
$\mu=\frac{1}{4}$.
\#1329811
For each $t \in R$, let $[t]$ be the greatest integer less than or equal to t. Then, $\lim _{x \rightarrow 1+}(1-|x|+\sin |1-x|) \sin \left(\frac{\pi}{2}[1-x]\right)$.

$$
|1-x|[1-x]
$$

A Equals - 1

B Equals 1

C Does not exist
D Equals 0

Solution

$\lim _{x \rightarrow 1^{+}} \frac{(1-|x|+\sin |1-x|) \sin \left(\frac{\pi}{2}[1-x]\right)}{|1-x|[1-x]}$
$=\lim _{x \rightarrow 1^{+}} \frac{(1-x)+\sin (x-1)}{(x-1)(-1)} \sin \left(\frac{\pi}{2}(-1)\right)$
$=\lim _{x \rightarrow 1^{+}}\left(1-\frac{\sin (x-1)}{(x-1)}\right)(-1)=(1-1)(-1)=0$.

\#1329829

 either 7 or 8 is?

A $\frac{13}{36}$
B $\quad \frac{19}{36}$

C	19
2	

D $\frac{15}{72}$
Solution
$P(7$ or 8$)=P(H) P(7$ or 8$)+P(T) P(7$ or 8$)=\frac{1}{2} \times \frac{11}{36}+\frac{1}{2} \times \frac{2}{9}=\frac{19}{72}$.

\#1329859

Let $n \geq 2$ be a natural number and $0<\theta<\pi / 2$. Then $\int \frac{\left(\sin ^{\pi} \theta-\sin \theta\right) \frac{1}{\pi} \cos \theta}{\sin ^{\pi+1} \theta} d \theta$ is equal to: (Where C is a constant of integration)
A

$$
\frac{n}{n^{2}-1}\left(1-\frac{1}{\sin ^{\pi+1} \theta}\right) \frac{\pi+1}{\pi}+C
$$

B $\quad \frac{1}{n^{2}+1}\left(1-\frac{1}{\sin ^{\pi-1} \theta}\right)^{\frac{\pi+1}{\pi}}+C$
C $\frac{1}{n-1}\left(1-\frac{1}{\sin ^{\pi-1} \theta}\right)^{\frac{\pi+1}{\pi}}+C$
D $\quad \frac{n}{n^{2}-1}\left(1+\frac{1}{\sin ^{\pi-1} \theta}\right)^{\frac{\pi+1}{\pi}}+C$

Solution

$\int \frac{\left(\sin ^{\pi} \theta-\sin \theta\right)^{1 / \pi} \cos \theta}{\sin ^{\pi+1} \theta} d \theta$
$=\int \frac{\sin \theta\left(1-\frac{1}{\sin ^{\pi-1} \theta}\right)^{1 / \pi}}{\sin ^{\pi+1} \theta} d \theta$
Put $1-\frac{1}{\sin ^{\pi-1} \theta}=t$
So $\frac{(n-1)}{\sin ^{\pi} \theta} \cos \theta d \theta=d t$
Now $\frac{1}{n-1} \int(t)^{1 / \pi} d t$
$=\frac{1}{(n-1)} \frac{(t) \frac{1}{n}+1}{\frac{1}{n}+1}+C$
$=\frac{1}{(n-1)}\left(1-\frac{1}{\sin ^{\pi-1 \theta}}\right)^{\frac{1}{\pi}+1}+C$

