Sol.

Two light identical spring of spring constant k are attached horizontally at the two ends of a uniform horizontally rod $A B$ of length ρ and mass m. The rod is pivoted at its centre ' O ' and can rotate freely in horizontal plane. The other ends of the two spring are fixed to rigid supports as shown in figure. The rod is gently pushed through a small angle and released. The frequency of resulting oscillation is

A $\frac{1}{2 \pi} \sqrt{\frac{6 k}{m}}$

B $\frac{1}{2 \pi} \sqrt{\frac{2 k}{m}}$

C $\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$

D $\frac{1}{2 \pi} \sqrt{\frac{3 k}{m}}$

Solution

$T=-2 K x_{2}^{\frac{\rho}{2}} \cos \theta$
$\Rightarrow I=\frac{\text { Kille }^{2}}{2} \theta=-C \theta$
$f=\frac{1}{2 \pi} \sqrt{\frac{\bar{c}}{1}}=\frac{1}{2 \pi} \sqrt{ } \frac{\frac{\overline{K P^{2}}}{\frac{2}{M P^{2}}}}{12}$
$f=\frac{1}{2 \pi} \sqrt{\frac{6 k}{M}}$

\#1332487

A cylinder of radius R is surrounded by a cylindrical shell of inner radius R and outer radius $2 R$. The thermal conductivity of the material of the inner cylinder is $K _1$ and that of the outer cylinder is K_2. Assuming no loss of heat, the effective thermal conductivity if the system for heat flowing along the length of the cylinder is

A $\quad K_{1}+K_{2}$

B
$\frac{K_{1}+K_{2}}{2}$
C
$\frac{2 K_{1}+3 K_{2}}{5}$
D $\frac{K_{1}+3 K_{2}}{4}$
Solution
$K_{e q}=\frac{K_{1} A_{1}+K_{2} A_{2}}{A_{1}+A_{2}}$
$=\frac{K_{1}\left(\pi R^{2}\right)+K_{2}\left(3 \pi R^{2}\right)}{4 \pi R^{2}}$
$=\frac{K_{1}+3 K_{2}}{4}$

\#1332627

A travelling harmonic wave is represented by the equation $y(x, t)=10^{-3} \sin (50 t+2 x)$, where x and y are in meter and t is in seconds. Which of the following is a correct statement about the wave? The wave is propagating along the__?

A negative x-axis with speed $25 m_{S}{ }^{-1}$
B \quad The wave is propagating along the positive x-axis with speed $25 m_{S^{-1}}$

C The wave is propagating along the positive x-axis with speed $100 m_{S}{ }^{-1}$

D The wave is propagating along the negative x-axis with speed $25 m_{S}{ }^{-1}$

Solution

$y=a \sin (\omega t+k x)$
\Rightarrow wave is moving along-ve x-axis speed
$v=\frac{\omega}{K} \Rightarrow v=\frac{50}{2}=25 \mathrm{~m} / \mathrm{sec}$.

\#1332698

A $\quad \operatorname{Gm}\left[A\left(\frac{1}{a+L}-\frac{1}{a}\right)-B L\right]$
$G m\left[A\left(\frac{1}{a}-\frac{1}{a+L}\right)+B L\right]$
C $\operatorname{Gm}\left[A\left(\frac{1}{a+L}-\frac{1}{a}\right)+B L\right]$
D $\quad G m\left[A\left(\frac{1}{a}-\frac{1}{a+L}\right)-B L\right]$

Solution

\#1332827

A light wave is incident normally on a glass slab of refractive index 1.5 . If 4% of light gets reflected and the amplitude of the electric field of the incident light is $30 \mathrm{~V} / \mathrm{m}$,then the amplitude of the electric field for the wave propogating in the glass medium will be:

A $10 \mathrm{~V} / \mathrm{m}$
B $24 \mathrm{~V} / \mathrm{m}$
C $\quad 30 \mathrm{~V} / \mathrm{m}$
D $\quad 6 \mathrm{~V} / \mathrm{m}$
Solution
$P_{\text {refracted }}=\frac{96}{100} P_{1}$
$\Rightarrow K_{2} A_{t}^{2}=\frac{96}{100} K_{1} A_{i}^{2}$
$\Rightarrow r_{2} A_{t}^{2}=\frac{96}{100} r_{1} A_{i}^{2}$
$\Rightarrow A_{t}^{2}=\frac{96}{100} \times \frac{1}{3} 2 \times(30)^{2}$
$A_{t} \sqrt{\frac{64}{100} \times(30)^{2}}=24$

\#1332828

The output of the given logic circuit is:

A $\quad \bar{A}^{B}$
$\mathrm{B} \quad A_{B}$
C $A B+{ }_{A B}^{-}$
D $\quad A_{\bar{B}}+\bar{A} B$
Solution

\#1332830

In the figure shown, after the switch 'S' is turned from position 'A' toposition ' B ', the energy dissipated in the circuit in terms of capacitance ' C ' and total charge ' Q ' is:

A $\quad \frac{3}{8} \frac{Q^{2}}{C}$
B $\quad \frac{3}{4} \frac{Q^{2}}{C}$
C $\quad \frac{1}{8} \frac{Q^{2}}{C}$
D $\quad \frac{5}{8} \frac{Q^{2}}{C}$
Solution
$v_{i}=\frac{1}{2}(C E)^{2}$
$V_{f}=\frac{(C E)^{2}}{2 \times 4 c}=\frac{1}{2} \frac{(C E)^{2}}{4}$
$\Delta E=\frac{1}{2} C E^{2} \times \frac{3}{4}=\frac{3}{8} C E^{2}$

\#133283

A particle of mass moves in a circular orbit in a central potential field $U(r)=\frac{1}{2} k_{r}{ }^{2}$. If Bohr's quantization condition is applied, radii of possible orbitals and energy levels vary with quantum number n as:

A $\quad r_{n} \propto n^{2}, E_{n} \propto \frac{1}{n^{2}}$
B $\quad r_{n} \propto \sqrt{n}, E_{n} \propto \frac{1}{n}$
C $\quad r_{n} \propto n, E_{n} \propto n$
D $\quad r_{n} \propto \sqrt{n}, E_{n} \propto n$
Solution
$F=\frac{d V}{d R}=k r=\frac{m V^{2}}{r}$
$m v r=\frac{n h}{2 \pi}$
$r^{2} \infty n$
$r^{2 \infty} \sqrt{n}$
$E=\frac{1}{2} k_{r}{ }^{2}+\frac{1}{2} m_{V}{ }^{2 \infty} r^{2}$

\#1332832

Two electric bulbs, rated at ($25 \mathrm{~W}, 220 \mathrm{~V}$) and ($100 \mathrm{~W}, 220 \mathrm{~V}$), are connected in series across a 220 V voltage source. If the 25 W and 100 W bulbs draw powers P_{1} and P_{2} respectively then \qquad ?

A $\quad P 1=9 W, P 2=16 W$

B $\quad P 1=4 W, P 2=16 \mathrm{~W}$
C $P 1=16 W, P 2=4 W$
D $\quad P 1=16 W, P 2=9 W$
Solution
$R_{1}=\frac{220^{2}}{25}=1936 \Omega$
$R_{2}=\frac{220^{2}}{100}=484 \Omega$
$i=\frac{220}{R_{1}+R_{2}}=\frac{1}{11} A$
$P_{1}=i^{2} R_{1}=\frac{1}{121} \times 1936=16 \mathrm{~W}$
$P_{2}=i^{2} R_{2}=\frac{1}{121} \times 484=4 W$

\#1332835

A satellite of mass M is in a circular orbit of radius R about the centre of the earth. A meteorite of the same mass, falling towards the earth, collides with the satellite completely inelastically. The speed of the satellite and the meteorite are the same, just before the collision. The subsequent motion of the combined body will be:

A in a circular orbit of a different radius

C
in an elliptical orbit

D such that it escapes to infinity

Solution
$m \hat{v_{i}}+m \hat{v_{j}}$
$=2 m_{V}{ }^{-1}$
$v=\frac{1}{\sqrt{2}} \times \sqrt{\frac{G M}{R}}$

\#1332836

Let the moment of inertia of a hollow cylinder if length 0 cm (inner radius 10 cm and outer radius 20 cm), about its axis, be I . The radius of a thin cylinder of the same mass such that its moment of inertia about its axis is also l,is

A $\quad 12 \mathrm{~cm}$

B $\quad 18 \mathrm{~cm}$

C 16 cm
D $\quad 14 \mathrm{~cm}$
Solution
$m \frac{20^{2}+10^{2}}{2}=m k^{2}$
$k \sqrt{\frac{400+100}{2}}$
$k=\sqrt{2} 50$
$k=5 \sqrt{10}$
$k=16$

\#1332837

A passenger train of length 60 m travels at a speed of $80 \mathrm{~km} / \mathrm{hr}$. Another freight train of length 120 m travels at a speed of $30 \mathrm{~km} / \mathrm{hr}$. The ratio of times taken by the passenger train to completely cross the freight train when: (1)they are moving in the same direction, and (ii) in the opposite directions is \qquad ?

A $\frac{5}{2}$
B $\quad \frac{25}{11}$
C $\frac{3}{2}$
D $\quad \frac{11}{5}$

Solution

$t_{1}=\frac{x}{v-u}=\frac{x}{50}$
$t_{2}=\frac{x}{v+u}=\frac{x}{100}$
$\frac{t_{1}}{t_{2}}=\frac{11}{5}$

\#1332838

An ideal gas occupies a volume of $2 \mathrm{~m}^{3}$ at a pressure of $3 \times 10^{6} \mathrm{~Pa}$. The energy of the gas is:

A $\quad 3 \times 10^{2} \mathrm{~J}$
B $\quad 10^{8} \mathrm{~J}$

D

```
9\times106
```

Solution
Energy $=\frac{1}{2} n R T=\frac{f}{2} P V$

$$
\begin{aligned}
& =\frac{f}{2}\left(3 \times 10^{6}\right)(2) \\
& =f \times 3 \times 10^{6}
\end{aligned}
$$

Considering gas is monoatomic i.e.f=3
$E=9 \times 10^{6} \mathrm{~J}$

\#1332840

A 100 V carrier wave is made to vary berween 160 V and 40 V by a modulating signal. What is the modulation index?

A 0.6

B $\quad 0.5$
$\begin{array}{ll}\text { C } & 0.3\end{array}$

D 0.4

Solution

$A_{C}=100$
$A_{c}+A_{m}=160$
$A_{C}-A_{m}=40$
$A_{c}=100$ and $A_{m}=40$
$\mu=\frac{A_{m}}{A_{c}}=0.6$

\#1332841

The galvanometer deflection, when key K_{1} is closed but K_{2} is open, equals θ_{0} (see figure). On closing K_{2} also and adjusting $R_{2} t o 5 \Omega$, the deflection in galvanometer becomes $\frac{\theta_{0}}{5}$
The resistance of the galvanometer is, then, given by [Neglect the internal resistance of battery]:

A 12Ω

B 25Ω

C 5Ω
D 22Ω

Solution

```
case I \(i_{g}=\frac{E}{220+R_{g}}=C \theta_{0} \quad\)..(i)
casell \(\quad i_{g}=\left(\frac{E}{220+\frac{5 R_{g}}{5+R_{g}}}\right) \times \frac{5}{\left(R_{g}+5\right)}=\frac{C \theta_{0}}{5} \ldots\) (ii)
\(\Rightarrow \frac{5 E}{225 R_{g}+1100}=\frac{C \theta_{0}}{5}\)..(ii)
\(\frac{E}{220+R_{g}}=C \theta\)
...(i)
\(\Rightarrow \frac{225 R_{g}+1100}{1100+5 R_{0}}=5\)
\(\Rightarrow 5500+25 R_{g}=225 R_{g}=1100\)
\(200 R_{g}=4400\)
\(R_{g}=22 \Omega\)
-4
```


\#1333173

A person standing on an open ground hears the sound jet aeroplane,coming from north at an angle 60° with ground level.But he finds the aeroplane right vertically above his position. If u is the speed of sound, speed of the plane is:

A $\frac{2 u}{\sqrt{3}}$
B u
C $\frac{u}{2}$
D $\frac{\sqrt{3}}{2} u$
Solution
$A B=V_{p} \times t$
$B C=V t$
$\cos 60^{\circ}=\frac{A B}{B C}$
$\frac{1}{2}=\frac{V_{p} \times t}{V t}$
$V_{p}=\frac{V}{2}$
\#1333201
A proton and an α - particle (with their masses in the ratio of $1: 4$ and charges in the ratio of $1: 2$) are accelerated from rest through a potential difference V . If a uniform magnetic field (B) is set up perpendicular to their velocities, the ratio of the radii $r_{p}: r_{\alpha}$ of the circular path described by them will be :

A	$1: \sqrt{2}$

B $1: 2$

C $1: 3$
D $1: \sqrt{3}$

Solution

$K E=q \Delta V$
$r=\frac{\sqrt{2 m q \Delta V}}{q B}$
$r \propto \sqrt{\frac{m}{q}}$
$\frac{r_{p}}{r_{\alpha}}=\frac{1}{\sqrt{2}}$

\#1333266

A point source of light, S is placed at a distance L in front of the centre of plane mirror of width d which is hanging vertically on a wall. A man walks in front of the mirror along a line parallel to the mirror, at a distance $2 L$ as shown below. The distance over which the man can see the image of the light source in the mirror is :

A $3 d$
B $\frac{d}{2}$
C d

D $\quad 2 d$

Solution

By similar triangles, $\triangle A E C=\triangle I H A$
$\frac{y}{2 L}=\frac{d}{2 L}$
$y=d$

Total distance, $\mathrm{CD}=y+\frac{d}{2}+\frac{d}{2}+y=3 d$

\#1333279

The least count of the main scale of a screw gauge is 1 mm .The minimum number of division on its circular scale required to measure $5 \mu \mathrm{~m}$ diameter of wire is:

A 50

B $\quad 100$

C 200

D 500
Solution

Least count $=\frac{\text { Pitch }}{\text { Number ofdivision on circular scale }}$
$5 \times 10^{-6}=\frac{10^{3}}{N}$
$N=200$

\#1333287

A simple pendulum, made of a string of length I and a bob of mass m, is released from a small angle θ_{0}. It strikes a block of mass M, kept on a horizontal surface at its lowest point of oscillations, elastically. It bounces back and goes up to an angle θ_{1}. Then M is given by :

A $m\left(\frac{\theta_{0}+\theta_{1}}{\theta_{0}-\theta_{1}}\right)$
B $\frac{m}{2}\left(\frac{\theta_{o}-\theta_{1}}{\theta_{o}+\theta_{1}}\right)$
C $\frac{m}{2}\left(\frac{\theta_{0}+\theta_{1}}{\theta_{0}-\theta_{1}}\right)$
$\mathrm{D} \quad m\left(\frac{\theta_{o}-\theta_{1}}{\theta_{0}+\theta_{1}}\right)$
Solution
$u=\sqrt{2 g /\left(1-\cos \theta_{o}\right)} \ldots \ldots . .$. (1)
$v=$ velocity of ball after collision
$v=\frac{m-M}{m+M} u$

Since ball rises upto height θ_{1}
$v=\sqrt{2 g /\left(1-\cos \theta_{1}\right)}=\frac{m-M}{m+M} u \ldots \ldots \ldots$ (2)

From (1) and (2) $\frac{m-M}{m+M}=\frac{1-\cos \theta_{1}}{1-\cos \theta_{0}}=\frac{\sin \frac{\theta_{1}}{2}}{\sin \frac{\theta_{0}}{2}}$
$\frac{M}{m}=\frac{\theta_{0}-\theta_{1}}{\theta_{0}+\theta_{1}}$
$M=\left(\frac{\theta_{0}-\theta_{1}}{\theta_{0}+\theta_{1}}\right) m$

Just before collision

\#1333298

What is the position and nature of image formed by lens combination shown in figure?
(f_{1}, f_{2} are focal length)

A $\quad 70 \mathrm{~cm}$ from point B at left; virtual
B $\quad 40 \mathrm{~cm}$ from point B at right ;real
C $\frac{20}{3} \mathrm{~cm}$ from point B at right ,real
D 70 cm from point B at right, real
Solution
For first lens
$\frac{1}{v}-\frac{1}{-20}=\frac{1}{5}$
$V=\frac{20}{3}$
For second lens
$V=\frac{20}{3}-2=\frac{14}{3}$
$\frac{1}{v}-\frac{1}{\frac{14}{3}}=\frac{1}{-5}$
$V=70 \mathrm{~cm}$

\#1333308

 be the current through the battery long after the switch is closed?

B $\quad 7.5$ A

C $\quad 5.5 \mathrm{~A}$
D $\quad 3 A$

Solution

Ideal inductor will behave like zero resistance long time after switch is closed
$I=\frac{2 \varepsilon}{R}=\frac{2 \times 15}{5}=6 A$

Determine the electric dipole moment of the system of three charges, placed on the vertices of an equilateral triangle ,as shown in the figure:

A

$$
\text { (q) } \frac{\hat{i}+\hat{j}}{\sqrt{2}}
$$

B

$$
\sqrt{3} q \frac{\hat{j}-\hat{i}}{\sqrt{2}}
$$

C $-\sqrt{3} q f_{j}$
D $\quad 2 q f_{j}$
Solution
$\left|P_{1}\right|=q(d)$
$\left|P_{2}\right|=q d$
\mid Resultant $\mid=2 P \cos 30^{\circ}$
$2 q q\left(\frac{\sqrt{3}}{2}\right)=\sqrt{3} q d$

\#1333359

The position vector of the centre of mass ${ }_{\Gamma} \mathrm{cm}$ of an symmetric uniform bar of negligible area of cross section as shown in figure is:

A $\quad \underset{r}{ } \mathrm{~cm}=\frac{13}{8} L \hat{x}+\frac{5}{8} L \hat{y}$
B $\quad \underset{r}{c} c m=\frac{11}{8} L \hat{x}+\frac{3}{8} L \hat{y}$
C $\quad \underset{r}{c m}=\frac{13}{8} L \hat{x}+\frac{11}{8} L \hat{y}$
D $\quad \underset{r}{c} m=\frac{5}{8} L \hat{x}+\frac{13}{8} L \hat{y}$
Solution
$X_{c m}=\frac{2 m L+2 m L+\frac{5 m L}{2}}{4 m}=\frac{13}{8} L$
$Y_{c m}=\frac{2 m \times L+m \times\left(\frac{L}{2}\right)+m \times 0}{4 m}=\frac{5 L}{8}$

 in each wire and the direction of the magnetic field at O will be $\left(\mu 0=4 \pi 10^{7} N A 2\right)$

A $40 A$, perpendicular into the page

B $40 A$, perpendicular out of the page

C
$20 A$, perpendicular out of the page

D $20 A$, perpendicular into the page

Solution
Magnetic field at ' O ' will be done to 'PS' and ' Q_{N} ' only
i.e $B_{0}=B_{P S}+B_{Q N} \rightarrow$ Both inwards

Let current in each wire $=i$
$\therefore B_{0}=\frac{\mu_{0} i}{4 \pi d}+\frac{\mu_{0} i}{4 \pi d}$
$\therefore i=20 A$

\#1333449

In a meter bridge, the wire of length 1 m has a non-uniform cross-section such that, the variation $\frac{d R}{d l}$ of its resistance R with length $/$ is $\frac{d R}{d l} \propto \frac{1}{\sqrt{ } l}$. Two equal resistances are connected as shown in the figure. The galvanometer has zero deflection when the jockey is at point P. What is the length AP:

A $0.25 m$

B $0.3 m$

C $0.35 m$

D $\quad 0.2 m$

Solution

For the given wire : $d R=C \frac{d l}{\sqrt{l}}$, where $C=$ constant
Let resistance of part AP is R_{1} and $P B$ is R_{2}
$\therefore \frac{R^{\prime}}{R^{\prime}}=\frac{R_{1}}{R_{2}}$ or $R_{1}=R_{2}$ By balanced WSB concept
Now $\int d R=c \int \frac{d l}{\sqrt{I}}$
$\therefore R_{1}=c \int_{0}^{I} I^{-1 / 2} d l=C .2 . \sqrt{ } I$
$R_{2}=C \int_{l}^{1} I^{-1 / 2} d I=C .(2-2 \sqrt{ })$
Putting $R_{1}=R_{2}$
$C 2 \sqrt{I}=C(2-2 \sqrt{I})$
$\therefore 2 s q r t /=1$
$\sqrt{I}=\frac{1}{2}$
$I=\frac{1}{4} m$
$\Rightarrow 0.25 \mathrm{~m}$

\#1333461

For the given cyclic process $C A B$ as shown for a gas, the work done is :

A $1 J$

B $5 J$
C $10 J$

D 30 J

Solution
Since PV indicator diagram is given, so work done by gas is area under the cyclic diagram.
$\therefore \Delta W=$ Work done by gas $=\frac{1}{2} \times 4 \times 5 \mathrm{~J}$
$=10 \mathrm{~J}$

\#1333486

An ideal battery of $4 V$ and resistance R are connected in series in the primary circuit of a potentiometer of length $1 m$ and resistance 5Ω. The value of R, to given a potential difference of 5 mV across 10 cm of potentiometer wire is:

A 490Ω

B $\quad 480 \Omega$

C 395Ω

D 495Ω
Solution

Let current flowing in the wire is i.
$\therefore i=\left(\frac{4}{R+5}\right) A$
If resistance of $10 m$ length of wire is x
then $x=0.5 \Omega=5 \times \frac{0.1}{1} \Omega$
$\therefore \Delta V=P . d$ on wire $=i . x$
$5 \times 10^{-3}=\left(\frac{4}{R+5}\right)(0.5)$
$\therefore \frac{4}{R+5}=10^{-2}$
$\therefore R=395 \Omega$

\#1333497

$2500 V$ The ratio of de-Broglie wavelengths $\frac{\lambda_{A}}{\lambda_{B}}$ is close to:

A 10.00

B $\quad 14.14$
$\begin{array}{ll}\text { C } & 4.47\end{array}$

D $\quad 0.07$

Solution

K.E acquired by change $=K=q V$
$\lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m K}}=\frac{h}{\sqrt{2 m q V}}$
$\frac{\lambda_{A}}{\lambda_{B}}=\frac{\sqrt{2 m_{B} q_{B} V_{B}}}{2 m_{A} q_{A} V_{A}}=2 \sqrt{50}$
$=2 \times 7.07=14.14$

\#1333518

 mutual repulsion. The figure that represents best the speed $V(R(t))$ of the distribution as a function of its instantaneous radius $R(t)$ is

A

B

C
(3)

a

Solution
At any instant ' t '
Total energy of change distribution is constant
i. e. $\frac{1}{2} m v^{2}+\frac{K Q^{2}}{2 R}=0+\frac{K Q^{2}}{2 R_{0}}$
$\therefore \frac{1}{2} m V^{2}=\frac{\frac{K Q^{2}}{2 R_{0}}-\frac{K Q^{2}}{2 R}}{L^{2}}$
$\therefore v=\sqrt{\frac{K Q^{2}}{m}\left(\frac{1}{R_{0}}-\frac{1}{R}\right)}=C \sqrt{\frac{1}{R_{0}}-\frac{1}{R}}$
Also the slop of v -s curve will go on decreasing
\therefore Graph is correctly shown by option (1)

\#1332581

8 g of NaOH is dissolved in 18 g of $\mathrm{H}_{2} \mathrm{O}$. Mole fraction of NaOH in solution and molality (in $\mathrm{mol}^{-1} \mathrm{~kg}^{-1}$) of the solutions respectively are:

A $0.167,11.11$

B $\quad 0.2,22.20$

C $\quad 0.2,11.11$

D $\quad 0.167,22.20$

Solution

8 g NaOH, mol of $\mathrm{NaOH}=\frac{8}{40}=0.2 \mathrm{~mol}$
18 g of $\mathrm{H}_{2} \mathrm{O}$, mol of $\mathrm{H}_{2} \mathrm{O}=\frac{18}{18}=1 \mathrm{~mol}$
$\therefore X_{\mathrm{NaOH}}=\frac{0.2}{1.2}=0.167$
Molality $=\frac{0.2 \times 1000}{18}=11.11 \mathrm{~m}$.
89 NaOH, mol of $\mathrm{NaOH}=\frac{8}{40}=0.2 \mathrm{~mol}$
18 g of $\mathrm{H}_{2} \mathrm{O}$, mol of $\mathrm{H}_{2} \mathrm{O}=\frac{18}{18}=1 \mathrm{~mol}$
$\therefore X_{\mathrm{NaOH}}=\frac{0.2}{1.2}=0.167$
Molality $=\frac{0.2 \times 1000}{18}=11.11 \mathrm{~m}$.

\#1332594

The correct statement(s) among I to III with respect to potassium ions that are abundant within the cell fluids is/are:
I. They activate many enzymes
II. They participate in the oxidation of glucose to produce ATP
III. Along with sodium ions, they are responsible for the transmission of nerve signals.

A I, II and III
B I and III only
C III only

D I and II only

Solution

The Potassium ions that are abundant within the cell fluids can activate many enzymes

They participate in the oxidation of glucose to produce ATP and along with Sodium ions, they are responsible for the transmission of nerve signals.

So ,Option A is correct

\#1332604

The magnetic moment of an octahedral homoleptic $M n(I)$ complex is $5.9 B M$. The suitable ligand for this complex is:

A CN^{-}

B NCS^{-}
C CO

D Ethylenediamine

Solution

$\mu=5.9 \mathrm{BM} \quad \therefore \mathrm{n}(\mathrm{no}$ of unpaired e$)=5$
Cation $M_{n}{ }^{\prime \prime}-3 d^{5}$ confn only possible for relatively weak ligand.
$\therefore \mathrm{NCS}^{-}$
$\mu=5.9 \mathrm{BM} \quad \therefore \mathrm{n}($ no of unpaired e$)=5$
Cation $M n^{\prime \prime}-3 d^{5}$ confn only possible for relatively weak ligand.
$\therefore N C S^{-}$is the answer.

\#1332617

The correct structure of histidine in a strongly acidic solution $(\mathrm{pH}=2)$ is:

A

B

C

D

Solution
Histidine is (see figure)
Zwitter ionic form
$p / n=7.59$.

A $\quad O_{3}$
B
$\mathrm{CH}_{2}=\mathrm{CHCHO}$

C
$\mathrm{CF}_{2} \mathrm{Cl}_{2}$
D $\mathrm{H}_{3} \mathrm{C}-\mathrm{ClIO}-\mathrm{OONO}_{2}$

Solution
Freons (CFC's) are not common components of photo chemical smog.
\#1332640
The upper stratosphere consisting of the ozone layer protects us from the sun's radiation that falls in the wavelength region of

A 600-750nm

B $0.8-1.5 \mathrm{~nm}$

C $\quad 400-550 \mathrm{~nm}$

D $\quad 200-315 \mathrm{~nm}$
Solution
Ozone protects most of the medium frequencies ultraviolet light from $200-315 \mathrm{~nm}$ wave length.

\#1332649

The major product of the following reaction is:

A

B

C

D

Solution

\#1332666

(A)

(B)

(C)

The increasing order of the reactivity of the following with $\mathrm{LiAlH} H_{4}$ is:

A $(\mathrm{A})<(\mathrm{B})<(\mathrm{D})<(\mathrm{C})$

B $\quad(\mathrm{A})<(\mathrm{B})<(\mathrm{C})<$ (D)

C
$(\mathrm{B})<(\mathrm{A})<(\mathrm{D})<(\mathrm{C})$

D (B) $<$ (A) $<$ (C) $<$ (D)

Solution

Rate of nucleophilic attack on carbonyl \propto Electrophilicity of carbonyl group.

The major product of the following reaction is:

A

B

C

D

Solution
NaBH_{4} can not reduce $\mathrm{C}=\mathrm{C}$ but can reduce - $\mathrm{C} \mid 1 \mathrm{O}$ - into -OH .

\#1332706

Molecules of benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$ dimerise in benzene. ' w ' g of the acid dissolved in 30 g of benzene shows a depression in freezing point equal to 2 K . If the percentage association of the acid to form dimer in the solution is 80 , then w is:
(Given that $K_{f}=5 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, Molar mass of benzoic acid $=122 \mathrm{~g} \mathrm{~mol}^{-1}$)

A $\quad 1.89$
B $\quad 2.4 \mathrm{~g}$
C $\quad 1.0 \mathrm{~g}$
D $\quad 1.5 \mathrm{~g}$

Solution

$2\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right) \mathrm{Wg}_{\rightarrow(30 \mathrm{~g})}^{\mathrm{C}_{6} \mathrm{H}_{6}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}_{2}$ diser
$\Delta_{f} T=i k_{f} m$
$2=0.6 \times 5 \times \frac{w \times 1000}{122 \times 30}$
$(i=1-0.8+0.4=0.6)$
$w=2.44 \mathrm{~g}$.

\#1332729

Given:
(i) C (graphite) $+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) ; \Delta r H^{\circ}=x \mathrm{kJmol}^{-1}$.
(ii) C (graphite) $+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$;
$\Delta r H^{\circ}=y \mathrm{kJmol}^{-1}$
(iii) $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$;
$\Delta r H^{\circ}=\mathrm{zkJmol}^{-1}$
Based on the given thermochemical equations, find out which one of the following algebraic relationships is correct?

A $z=x+y$
B $x=y-z$
C $x=y+z$
D $y=2 z-x$
Solution
$C_{(\text {graphite })}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \Delta_{r} \mathrm{H}^{\circ}=x \mathrm{~kJ} / \mathrm{mol}$.(1)
$C_{(\text {graphite })}+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}(g) \Delta_{r} H^{\circ}=y \mathrm{~kJ} / \mathrm{mol} . .(2)$
$\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) \Delta_{r} \mathrm{H}^{\circ}=z \mathrm{~kJ} / \mathrm{mol} \cdot(3)$
(1) $=(2)+(3)$
$x=y+z$.

\#1332742

An open vessel at $27^{\circ} \mathrm{C}$ is heated until two fifth of the air(assumed as an ideal gas) in it has escaped from the vessel. Assuming that the volume of the vessel remains constant, the temperature at which the vessel has been heated is:

A $720^{\circ} \mathrm{C}$
B $\quad 500^{\circ} \mathrm{C}$
C $\quad 750^{\circ} \mathrm{C}$
D $\quad 500 \mathrm{~K}$
Solution
$\frac{2}{5}$ air escaped from vessel, $\therefore \frac{3}{5}$ air remain is vessel. P, V constant
$n_{1} T_{1}=n_{2} T_{2}$
$n_{1}(300)=\left(\frac{3}{5} n_{1}\right) T_{2} \Rightarrow T_{2}=500 \mathrm{~K}$.

\#1332758

A 0.75
B $\quad 0.125$

C 0.25
D 0.50
Solution
$\Lambda_{m}^{0}(H A)=\Lambda_{m}^{0}(H C l)+\Lambda_{m}^{0}(N a A)-\Lambda_{m}^{0}(N a C l)$
$=425.9+100.5-126.4$
$=400 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$
$\Lambda_{m}=\frac{1000 \mathrm{~K}}{M}=\frac{1000 \times 5 \times 10^{-5}}{10^{-3}}=50 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$
$\alpha=\frac{\Lambda_{m}}{\Lambda_{m}^{0}}=\frac{50}{400}=0.125$.
$\Lambda_{m}^{0}(H A)=\Lambda_{m}^{0}(H C l)+\Lambda_{m}^{0}(N a A)-\Lambda_{m}^{0}(N a C l)$
$=425.9+100.5-126.4$
$=400 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$
$\Lambda_{m}=\frac{1000 \mathrm{~K}}{M}=\frac{1000 \times 5 \times 10^{-5}}{10^{-3}}=50 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$
$\alpha=\frac{\Lambda_{m}}{\Lambda_{m}^{0}}=\frac{50}{400}=0.125$.

The major product in the following conversion is:

A

B

C

D

Solution
$\Lambda_{m}^{0}(H A)=\Lambda_{m}^{0}(H C l)+\Lambda_{m}^{0}(\mathrm{NaA})-\Lambda_{m}^{0}(\mathrm{NaCl})$
$=425.9+100.5-126.4$
$=400 \mathrm{Sm}^{2} \mathrm{~mol}^{-1}$
$\Lambda_{m}=\frac{1000 \mathrm{~K}}{M}=\frac{1000 \times 5 \times 10^{-5}}{10^{-3}}=50 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$
$\alpha=\frac{\Lambda_{m}}{\Lambda_{m}^{0}}=\frac{50}{400}=0.125$.

\#1332783

If $K_{s p}$ of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ is 8×10^{-12}, the molar solubility of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ in $0.1 \mathrm{M} \mathrm{AgNO}_{3}$ is:
$\begin{array}{ll}\text { A } & 8 \times 10^{-12 M} \\ \text { B } & 8 \times 10^{-10 M}\end{array}$
C $8 \times 10^{-11} \mathrm{M}$
D $8 \times 10^{-13 \mathrm{M}}$

Solution

$\mathrm{Ag}_{2} \mathrm{CO}_{3}(s) \rightleftharpoons 2 \mathrm{Ag}^{+}(a q).(0.1+2 S) M+\mathrm{CO}_{3}^{-2}(a q) S M$
$K s p=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CO}_{3}^{-2}\right]$
$8 \times 10^{-12}=(0.1+2 S)^{2}(S)$
$S=8 \times 10^{-10} \mathrm{M}$.

$$
\begin{aligned}
& \mathrm{Ag}_{2} \mathrm{CO}_{3}(s) \rightleftharpoons 2 \mathrm{Ag}^{+}(a q .)(0.1+2 S) \mathrm{M}+\mathrm{CO}_{3}^{-2}(a q) S M \\
& K s p=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CO}_{3}^{-2}\right] \\
& 8 \times 10^{-12}=(0.1+2 S)^{2}(S) \\
& S=8 \times 10^{-10} \mathrm{M}
\end{aligned}
$$

\#1332790

Among the following, the false statements is:

B tyndall effect can be used to distinguish between a colloidal solution and a true solution
C it is possible to cause artificial rain by throwing electrified sand carrying charge opposite to the one on clouds from an aeroplane
D lyophilic sol can be coagulated by adding an electrolyte

Solution

Colloidal solution of rubber are negatively charged.

Colloidal solution of rubber are negatively charged.

\#1332794

The pair that does not require calcination is:

A ZnO and MgO
B $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{CaCO}_{3} \cdot \mathrm{MgCO}_{3}$
C ZnO and $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$

D ZnCO_{3} and CaO

Solution

$\mathrm{ZnO} \& \mathrm{MgO}$ both are in oxide form therefore no change on calcination.
ZnO and MgO both are in oxide form therefore no change on calcination.

\#1332798

The correct order of atomic radii is:

A $\mathrm{Ce}>\mathrm{Eu}>\mathrm{Ho}>\mathrm{N}$
B $\quad \mathrm{N}>\mathrm{Ce}>\mathrm{Eu}>\mathrm{Ho}$

C $\mathrm{Eu}>\mathrm{Ce}>\mathrm{Ho}>\mathrm{N}$

D $\mathrm{Ho}>\mathrm{N}>\mathrm{Eu}>\mathrm{Ce}$

Solution

Hence the order is $\mathrm{Eu}>\mathrm{Ce}>\mathrm{Ho}>\mathrm{N}$.

\#1332801

The element that does not show catenation is:

Solution
Catenation is not shown by lead.

Catenation is not shown by lead.

The combination of plots which does not represent isothermal expansion of an ideal gas is:

A (A) and (C)

B (A) and (D)
C (B) and (D)
D (B) and (C)

Solution

Isothermal expansion $P V_{m}=K$ (Graph- C)
$P=\frac{K}{V_{m}}$ (Graph-A).

\#1332814
The volume strength of $1 \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}$ is:
(Molar mass of $\mathrm{H}_{2} \mathrm{O}_{2}=34 \mathrm{~g} \mathrm{~mol}^{-1}$)

A 16.8
B $\quad 11.35$
C 22.4

D $\quad 5.6$
Solution
$1 \mathrm{~L}-1 \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}$ solution will produce $11.35 \mathrm{~L} \mathrm{O}_{2}$ gas at STP.

For a reaction consider the plot of $\operatorname{In} \mathrm{k}$ versus $1 / T$ given in the figure. If the rate constant of this reaction at 400 K is $10^{-5} \mathrm{~s}^{-1}$, then the rate constant at 500 K is:

A $\quad 2 \times 10^{-4} s^{-1}$
B $\quad 10^{-4} s^{-1}$
C $\quad 10^{-6} S^{-1}$
D $\quad 4 \times 10^{-4} s^{-1}$
Solution
$\ln \frac{K_{2}}{K_{1}}=\frac{E_{a}}{R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
$2.303 \log \frac{K_{2}}{10^{-5}}=4606\left[\frac{1}{400}-\frac{1}{500}\right]$
$\Rightarrow K_{2}=10^{-4} s^{-1}$.

\#1332878

The element that shows greater ability to form $p \pi-p \pi$ multiple bonds, is:

A $S i$

B $G e$
C Sn
D

Solution

Carbon atom have 2 p orbitals able to form strongest $p \pi-p \pi$ bonds.
\#1332884

$\xrightarrow[\text { (ii) } \mathrm{CrCO}_{3} / \mathrm{H}^{+}]{\text {(i) } \mathrm{NaNO}_{2} / \mathrm{H}^{+}}$
(ii) $\mathrm{H}_{2} \mathrm{SO}_{4}$ (conc.), Δ

The major product of the following reaction is:

A

B

C

D

Solution

\#1332892
(A)

(B)

(C)

(D)

The aldehydes which will not form Grignard product with one equivalent Grignard reagents are:

A (B), (C), (D)
B (B), (D)
C (B), (C)

D (C), (D)
Solution
Acid-base reaction of grignard reagent are fast.

\#1332896

The major product of the following reaction is:

A

B

c

D

Solution

\#1332902
Chlorine on reaction with hot and concentrated sodium hydroxide gives:

A Cl^{-}and ClO_{2}^{-}
B Cl^{-}and ClO_{3}^{-}
C Cl^{-}and ClO^{-}
D ClO_{3}^{-}and ClO_{2}^{-}
Solution
$3 \mathrm{Cl}_{2}+6 \mathrm{OH} \rightarrow 5 \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}$.

\#1332918

The major product of the following reaction is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ BrH $-\mathrm{ClBr} \mathrm{H}_{2} \rightarrow$ (ii) NaHaNH_{2} inliqNH3

A $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$
B $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{ClNH} \mathrm{H}-\mathrm{ClNH} \mathrm{H}_{2}$
c $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}=\mathrm{CH}_{2}$
D $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{NH}_{2}$
Solution

\#1332922

If the de Broglie wavelength of the electron in $n{ }^{\text {th }}$ Bohr orbit in a hydrogenic atom is equal to $1.5 \pi a_{0}$ (a_{0} is Bohr radius), then the value of n / z is:

A
1.0

B $\quad 0.75$
C
0.40

D
1.50

Solution

According to de-Broglie's hypothesis $2 \pi r_{a}=n \lambda \Rightarrow 2 \pi \cdot a_{0}=\frac{n^{2}}{z}=n \times 1.5 \pi a_{0}$
$\frac{n}{z}=0.75$

\#1332928

The two monomers for the synthesis of Nylone 6, 6 are:

A $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COOH}, \mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$
B $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}, \mathrm{H}_{2} \mathrm{~N}_{\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}_{2}}$
C $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COOH}, \mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}_{2}$
D $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}, \mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$
Solution
Nylon-6, 6 is polymer of Hexamethylene diamine $+\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{NH}_{2} \&$ Adipic acid $\downarrow \mathrm{HOOC}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COOH}$.

\#1331385

Let Z be the set of integers. If $A=\left\{x \in Z: 2(x+2)\left(x^{2}-5 x+6\right)\right\}=1$ and $B=\{x \in Z:-3<2 x-1<9\}$, then the number of subsets of the set $A \times B$, is:

A $\quad 2^{18}$

B $\quad 2^{10}$

C $\quad 2^{15}$
D $\quad 2^{12}$

Solution

$A=\left\{x \in z: 2^{(x+2)\left(x^{2}-5 x+6\right)}=1\right\}$
$2^{(x+2)}\left(x^{2}-5 x+6\right)=2^{0} \Rightarrow x=-2,2,3$
$A=\{-2,2,3\}$
$B=\{x \in Z:-3<2 x-1<9\}$
$B=\{0,1,2,3,4\}$
$A \times B$ has is 15 elements so number of subsets of $A \times B$ is 2^{15}.

\#1331590

If $\sin ^{4} \alpha+4 \cos ^{4} \beta+2=4 \sqrt{2} \sin \alpha \cos \beta ; \alpha, \beta \in[0, \pi]$, then $\cos (\alpha+\beta)-\cos (\alpha+\beta)$ is equal to :

A 0
$\begin{array}{ll}\text { B } & -\sqrt{2}\end{array}$

C $\quad-1$
D $\sqrt{2}$

Solution
A.M. \geq G.M.
$\frac{\sin ^{4} \alpha+4 \cos ^{4} \beta+1+1}{4} \geq\left(\sin ^{4} \alpha \cos ^{4} \beta .1 .1\right) \frac{1}{4}$
$\Rightarrow A . M .=$ G. M. $\Rightarrow \sin ^{4} \alpha=1=4 \cos ^{4} \beta$
$\sin \alpha=1, \cos \beta= \pm \frac{1}{\sqrt{2}}$
$\sin \beta=\frac{1}{\sqrt{2}}$ as $\beta \epsilon[0, \pi]$
$\cos (\alpha+\beta)-\cos (\alpha-\beta)=-2 \sin \alpha \sin \beta$
$=-\sqrt{2}$

\#1331714

If an angle between the line, $\frac{x+1}{2}=\frac{y-2}{1}=\frac{z-3}{-2}$ and the plane, $x-2 y-k z=3$ is $\cos ^{-1} \square \frac{2 \sqrt{2}}{3} \square$, then a value of k is:

A $-\frac{5}{3}$
B $\sqrt{\frac{3}{5}}$
c $\sqrt{\frac{5}{3}}$

D $-\frac{3}{5}$

Solution

DR's of line are $2,1,-2$
normal vector of plane is $\hat{i}-2 \hat{j}-k \hat{k}$
$\sin \alpha=\frac{\left(2 \hat{i}^{+}+\hat{j}-2 \hat{k}\right) \cdot(\hat{i}-2 \hat{j}-\hat{k})}{3 \sqrt{1+4+k^{2}}}$
$\sin \alpha=\frac{2 k}{3 \sqrt{k^{2}+5}}$
$\cos \alpha=\frac{2 \sqrt{2}}{3} \ldots \ldots \ldots \ldots .$. (2)
$(1)^{2}+(2)^{2}=1=k^{2}=\frac{5}{3}$

\#1331795

If a straight line passing through the point $P(-3,4)$ is such that its intercepted portion between the coordinate axes is bisected at P, then its equation is:

A $x-y+7=0$
B $\quad 3 x-4 y+25=0$
C $\quad 4 x+3 y=0$
D $4 x-3 y+24=0$
Solution
Let the line be $\frac{x}{a}+\frac{y}{b}=1$
$(-3,4)=\square \frac{a}{2}, \frac{b}{2} \square$
$a=-6, b=8$
equation of line is $4 x-3 y+24=0$

\#1331900

The integral $\int \frac{3 x^{13}+2 x^{11}}{\left(2 x^{4}+3 x^{2}+1\right)^{4}} d x$ is equal to: (where C is a constant of integration)
A $\frac{x^{4}}{\left(2 x^{4}+3 x^{2}+1\right)^{3}}+C$
B

$$
\frac{x^{12}}{6\left(2 x^{4}+3 x^{2}+1\right)^{3}}+C
$$

C $\frac{x^{4}}{6\left(2 x^{4}+3 x^{2}+1\right)^{3}}+C$
D

$$
\frac{x^{12}}{\left(2 x^{4}+3 x^{2}+1\right)^{3}}+C
$$

Solution

$\int \frac{3 x^{13}+2 x^{11}}{\left(2 x^{4}+3 x^{2}+1\right)^{4}} d x$
$\int \frac{\square \frac{3}{x^{3}}+\frac{2}{x^{5}} \square d x}{\square 2+\frac{3}{x^{2}}+\frac{1}{x^{4}} \square^{4}}$
Let $\square 2+\frac{3}{x^{2}}+\frac{1}{x^{4}} \square=t$
$-\frac{1}{2} \int \frac{d t}{t^{4}}=\frac{1}{6 t^{3}}+C \Rightarrow \frac{x^{12}}{6\left(2 x^{4}+3 x^{2}+1\right)^{4}}+C$

\#1331949

There are men and two women participating in a chess tournament. Each participant plays two games with every other participant. If the number of games played by the men between themselves exceeds the number of games played between the men and the women by 84 , then the value of m is :

A 9

B $\quad 11$
C $\quad 12$

D 7

Solution
Let m-men, 2-women
${ }^{m} C_{2} \times 2-{ }^{m} C_{1}{ }^{2} C_{1} .2=84$
$m^{2}-5 m-84=0 \Rightarrow(m-12)(m+7)=0$
$m=12$

\#1332057

If the function f given by $f(x)=x^{3}-3(a-2) x^{2}+3 a x+7$, for some $a \in R$ is increasing in $(0,1]$ and decreasing in $[1,5)$, then a root of the equation, $\frac{f(x)-14}{(x-1)^{2}}=0(x \neq 1)$ is

A 6

B 5
C 7

D $\quad-7$

Solution

$f^{\prime}(x)=3 x^{2}-6(a-2) x+3 a$
$f^{\prime}(x) \geq 0 \forall x \in(0,1]$
$f^{\prime}(x) \leq 0 \forall x \in[1,5)$
$\Rightarrow f^{\prime}(x)=0$ at $x=1 \Rightarrow a=5$
$f(x)-14=(x-1)^{2}(x-7)$
$\frac{f(x)-14}{(x-1)^{2}}=x-7$
\therefore answer is 7

\#1332081

Let f be a differentiable function such that $f(1)=2$ and $f^{\prime}(x)=f(x)$ for all $x \in R$. If $h(x)=f^{\prime}\left(f(x)\right.$, then $h^{\prime}(1)$ is equal to

A $4 e$
B $4 e^{2}$

C $2 e$

D $\quad 2 e^{2}$

Solution

$\frac{f^{\prime}(x)}{f(x)}=1 \forall x \in R$
Integrate and use $f(1)=2$
$f(x)=2 e^{x-1} \Rightarrow f^{\prime}(x)=2 e^{x-1}$
$h(x)=f\left(f(x) \Rightarrow h^{\prime}(x)=f^{\prime}(f(x)) f^{\prime}(x)\right.$
$h^{\prime}(1)=f^{\prime}(f(1)) f^{\prime}(1)$
$=f^{\prime}(2) f^{\prime}(1)$
$=2 \mathrm{e} .2=4 \mathrm{e}$

The tangent to the curve $y=x^{2}-5 x+5$, parallel to the line $2 y=4 x+1$, also passes through the point

A $\square \frac{1}{4}, \frac{7}{2} \square$
B $\quad \square \frac{7}{2}, \frac{1}{4} \square$
C $\square-\frac{1}{8}, 7 \square$
D $\square \frac{1}{8},-7 \square$
Solution
$y=x^{2}-5 x+5$
$\frac{d y}{d x}=2 x-5=2 \Rightarrow x=\frac{7}{2}$
at $x=\frac{7}{2}, y=\frac{-1}{4}$
Equation of tangent at $\square \frac{7}{2},-\frac{1}{4} \square$ is $2 x-y-\frac{29}{4}=0$
Now check options
$x=\frac{1}{8}, y=-7$

\#1332302

Let S be the set of all real values of λ such that a pllane passing through the points $\left(-\lambda^{2}, 1,1\right),\left(1,-\lambda^{2}, 1\right)$ and $\left(1,1,-\lambda^{2}\right)$ also passes through the point $(-1,-1,1)$. Then S is equal to:

A $\{\sqrt{3}\}$
B $\{\sqrt{3}-\sqrt{3}\}$
C $\quad\{1,-1\}$
D $\quad\{3,-3\}$

Solution

All four points are coplanar so
$\left|\begin{array}{ccc}1-\lambda^{2} & 2 & 0 \\ 2 & -\lambda^{2}+1 & 0 \\ 2 & 2 & -\lambda^{2}-1\end{array}\right|=0$
$\left(\lambda^{2}+1\right)^{2}\left(3-\lambda^{2}\right)=0$
$\lambda= \pm \sqrt{3}$

\#1332352

If a circle of radius R passes through the origin O and intersects the coordinate axes at A and B, then find the locus of the foot of perpendicular from O on $A B$.

A $\quad\left(x^{2}+y^{2}\right)^{2}=4 R x^{2} y^{2}$
B $\quad\left(x^{2}+y^{2}\right)(x+y)=R^{2} x y$
C $\left(x^{2}+y^{2}\right)^{3}=4 R^{2} x^{2} y^{2}$
D $\quad\left(x^{2}+y^{2}\right)^{2}=4 R^{2} x^{2} y^{2}$
Solution

Slope of $A B=\frac{-h}{k}$
Equation of AB is $h x+k y=h^{2}+k^{2}$
$A \square \frac{h^{2}+k^{2}}{h}, 0 \square, B \square 0, \frac{h^{2}+k^{2}}{k} \square$
$A B=2 R$
$\Rightarrow\left(h^{2}+k^{2}\right)^{3}=4 R^{2} h^{2} k^{2}$
$\Rightarrow\left(x^{2}+y^{2}\right)^{3}=4 R^{2} x^{2} y^{2}$

\#1332390

The equation of a tangent to the parabola, $x^{2}=8 y$, which makes an angle θ with the positive direction of x-axis, is:

A $x=y \cot \theta+2 \tan \theta$
B $x=y \cot \theta-2 \tan \theta$
C $x=x \tan \theta-2 \cot \theta$

D $x=x \tan \theta+2 \cot \theta$
Solution
$x^{2}=y$
$\Rightarrow \frac{d y}{d x}=\frac{x}{4}=\tan \theta$
$\therefore x_{1}=4 \tan \theta$
$y_{1}=2 \tan ^{2} \theta$
Equation of tangent:-
$y-2 \tan ^{2} \theta=\tan \theta(x-4 \tan \theta)$
$\Rightarrow x=y \cot \theta+2 \tan \theta$

\#1332503

If the angle of elevation of a cloud from a point P which is 25 m above a lake be 30° and the angle of depression of reflection of the cloud in the lake from P be 60°, then the height of the cloud (in meters) from the surface of the lake is:

A 42
B 50

C 45

D 60

Solution

$\tan 30^{\circ}=\frac{x}{y} \Rightarrow y=\sqrt{3} x \ldots \ldots \ldots .$. (i)
$\tan 60^{\circ}=\frac{25+x+25}{y}$
$\Rightarrow \sqrt{3} y=50+x$
$\Rightarrow 3 x=50+x$
$\Rightarrow x=25 \mathrm{~m}$
\therefore Height of cloud from surface $=25+25=50 \mathrm{~m}$
\#1332613
The integral $\int_{1}^{e}\left\{\square \frac{x}{e} \square^{2} x-\square_{x}^{\frac{e}{x}}\right\} / \log _{e} x d x$ is equal to :

A $\frac{1}{2}-e-\frac{1}{e^{2}}$
B $\frac{3}{2}-\frac{1}{e}-\frac{1}{2 e^{2}}$
C $-\frac{1}{2}+\frac{1}{e}-\frac{1}{2 e^{2}}$
D $\frac{3}{2}-e-\frac{1}{2 e^{2}}$
Solution
$\int_{1}^{e} \square \frac{x}{e} \square^{2} x \log _{e} x . d x-\int_{1}^{e} \square \frac{e}{x} \square \log _{e} x . d x$
Let $\square_{e}^{\frac{x}{e}} \square^{2} x=t, \square_{x}^{\frac{e}{\square}} \square^{x}=v$
$=\frac{1}{\left(\frac{1}{e}\right)^{2}} \int_{2}^{1} d t+\int_{e}^{1} d v$
$=\frac{1}{2} \square 1-\frac{1}{e}+(1-e)=\frac{3}{2}-\frac{1}{2 e^{2}}-e$

\#1332756

$\lim _{n \rightarrow \infty} \square \frac{n}{n^{2}+1^{2}}+\frac{n}{n^{2}+2^{2}}+\frac{n}{n^{2}+3^{2}}+\ldots \ldots+\frac{1}{5 n} \square$ is equal to:

A $\frac{\pi}{4}$
B $\tan ^{-1}(2)$
C $\tan ^{-1}(3)$
D $\frac{\pi}{2}$
Solution
$\lim _{x \rightarrow \infty} \sum_{r=1}^{2 n} \frac{n}{n^{2}+r^{2}}$
$\lim _{x \rightarrow \infty} \sum_{r=1}^{2 n} \frac{1}{1+1+\frac{r^{2}}{n^{2}} \square}=\int_{0}^{2} \frac{d x}{1+x^{2}}=\tan ^{-12}$

\#1332793

The set of all values of λ for which the system of linear equations.
$x-2 y-2 z=\lambda x$
$x+2 y+z=\lambda y$
$-x-y=\lambda z$
has a non-trivial solution.

A contains more than two elements

B is a singleton

C is an empty set
D contains exactly two elements
Solution
$x-2 y-2 z=\lambda x$
$(1-\lambda) x-2 y-2 z=0 \ldots \ldots$ (1)
$x+2 y+z=\lambda y$
$x+(2-\lambda) y+z=0$
$-x-y=\lambda z$
$x+y+\lambda z=0$
Since the system of given linear equations has a non-trivial solution.
Therefore,
$\left|\begin{array}{ccc}1-\lambda & -2 & -2 \\ 1 & 2-\lambda & 1 \\ 1 & 1 & \lambda\end{array}\right|=0$
$[(1-\lambda)(\lambda(2-\lambda)-1)-1(-2 \lambda-(-2))+1(-2-(-2(2-\lambda)))]=0$
$(1-\lambda)^{2} \lambda-2(1-\lambda)+2(1-\lambda)=0$
$\lambda(1-\lambda)^{2}=0$
$\Rightarrow \lambda=0,1$
Thus, the set of values of λ contains exactly two elements.
Hence the correct answer is (D) contains exactly two elements.
\#1332802
If ${ }^{n} C_{4},{ }^{n} C_{5}$ and ${ }^{n} C_{6}$ are in A.P., then n can be:

A 14

B $\quad 11$
C $\quad 9$

D 12

Solution

Given:-
$n C_{4}, n C_{5}$ and $n C_{6}$ are in A.P.
Therefore,
$n C_{5}=\frac{{ }^{n} C_{4}+{ }^{n} C_{6}}{2}$
$2 \times n C_{5}=n C_{4}+n C_{6}$
As we know that,
$n C_{r}=\frac{n!}{r!(n-r)!}$
Therefore,
$2 \times \frac{n!}{5!(n-5)!}=\frac{n!}{4!(n-4)!}+\frac{n!}{6!(n-6)!}$
$\frac{2}{5 \times 4!\times(n-5)(n-6)!}=\frac{1}{4!\times(n-4)(n-5)(n-6)!}+\frac{1}{6 \times 5 \times 4!\times(n-6)!}$
$\frac{2}{5 \times(n-5)}=\frac{1}{(n-4)(n-5)}+\frac{1}{6 \times 5}$
$\frac{2}{5(n-5)}=\frac{30+(n-4)(n-5)}{30(n-4)(n-5)}$
$\Rightarrow 12(n-4)=30+\left(n^{2}-9 n+20\right)$
$\Rightarrow 12 n-48=n^{2}-9 n+50$
$\Rightarrow n^{2}-21 n+98=0$
$\Rightarrow(n-7)(n-14)=0$
$\Rightarrow n=7,14$
Thus for $n=7$ or $n=14$, the terms $n C_{4}, n C_{5}$ and $n C_{6}$ are in A.P.
Hence the correct answer is $(A) 14$.
If a, b, c are in $A . P$, then $2 b=a+c$
So applying the same condition, we have
$2 \times\left({ }^{n} C_{5}\right)=\left({ }^{n} C_{6}\right)+\left({ }^{n} C_{4}\right)$
$\frac{2 \times n!}{5!(n-5)!}=\frac{n!}{6!(n-6)!}+\frac{n!}{4!(n-4)!}$
$\frac{2}{5!(n-5)!}=\frac{1}{6!(n-6)!}+\frac{1}{4!(n-4)!}$
$\frac{2}{5!(n-5)(n-6)!}=\frac{1}{6!(n-6)!}+\frac{1}{4!(n-4)(n-5)(n-6)!}$
$\frac{2}{5!(n-5)}=\frac{1}{6!}+\frac{1}{4!(n-4)(n-5)}$
$\frac{2}{5 \times 4!\times(n-5)}=\frac{1}{6 \times 5 \times 4!}+\frac{1}{4!(n-4)(n-5)}$
$\frac{2}{5 \times(n-5)}=\frac{1}{6 \times 5}+\frac{1}{(n-4)(n-5)}$
$\frac{2}{5 \times(n-5)}-\frac{1}{(n-4)(n-5)}=\frac{1}{6 \times 5}$
$12 n-78=n^{2}-9 n+20$
$n^{2}-21 n+98=0$
$(n-7)(n-14)=0$
$\therefore \quad n=14$ or $n=7$

\#1332874

Let \vec{a}, \vec{b} and \vec{c} be three unit vectors, out of which vectors \vec{b} and \vec{c} are non-parallel. If α and β are the angles which vector \vec{a} makes with vectors \vec{b} and \vec{c} respectively and $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{2} \vec{b}$, then $|\alpha-\beta|$ is equal to:

A 60°

B $\quad 30^{0}$

C
90°
D $\quad 45^{\circ}$
Solution
$(\vec{a} \cdot \vec{d}) \vec{b}-(\vec{a} \cdot \vec{b}) \cdot \vec{c}=\frac{1}{2} \vec{b}$
$\vec{b}^{\&}{ }_{c}$ are linearly independent
$\therefore \quad \vec{a} \cdot \vec{c}=\frac{1}{2} \& \vec{a} \cdot \vec{b}=0$
(All given vectors are unit vectors)
$\therefore \quad \alpha=60^{\circ} \& \beta=90^{\circ}$
$\therefore \quad|\alpha-\beta|=30^{\circ}$

\#1332904

If $A=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & \sin \theta & 1\end{array}\right]$; the for all $\theta \in \square \frac{3 \pi}{4}, \frac{5 \pi}{4} \square, \operatorname{det}(A)$ lies in the interval:

A $\left[\frac{5}{2}, 4\right]$
B $\left.\quad \frac{3}{2}, 3\right]$
C $\quad\left(0, \frac{3}{2}\right]$
D $\quad\left(1, \frac{5}{2}\right]$

Solution

$|A|=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & \sin \theta & 1\end{array}\right] ;$
$=2\left(1+\sin ^{2} \theta\right)$
$\theta \in \square \frac{3 \pi}{4}, \frac{5 \pi}{4} \square \Rightarrow \frac{1}{\sqrt{2}}<\sin \theta<\frac{1}{\sqrt{2}} \Rightarrow 0 \leq \sin ^{2} \theta<\frac{1}{2}$
$\therefore \quad|A| \in[2,3)$

\#1332975

$\lim _{x \rightarrow 1-} \frac{\sqrt{ } \pi-\sqrt{2 \sin ^{-1} x}}{\sqrt{ } 1-x}$ is equal to
A $\frac{1}{\sqrt{ } 2 \pi}$
B $\sqrt{\frac{\pi}{2}}$
C $\sqrt{\frac{2}{\pi}}$

D $\sqrt{\pi}$
Solution
$\lim x+1^{-} \frac{\sqrt{\pi}-\sqrt{2 \sin ^{-1} x}}{\sqrt{1-x}} \times \frac{\sqrt{\pi}+\sqrt{2 \sin ^{-1} x}}{\sqrt{\pi}+\sqrt{2 \sin ^{-1} x}}$
$\lim _{x \rightarrow 1^{-}} \frac{2\left(\frac{\pi}{2}-\sin ^{-1} x\right)}{\sqrt{1-x}\left(\sqrt{\pi}+\sqrt{2 \sin ^{-1} x}\right)}$
$\lim _{x \rightarrow 1^{-}} \frac{2 \cos ^{-1} x}{\sqrt{1-x}} \cdot \frac{1}{2 \sqrt{\pi}}$

Put $x=\cos \theta$
$\lim \theta \rightarrow 0+\frac{2 \theta}{\sqrt{2} \sin \left(\frac{\theta}{2}\right)} \cdot \frac{1}{2 \sqrt{\pi}}=\sqrt{\frac{2}{\pi}}$

\#1332985

The expression ${ }^{\sim}(\sim p \rightarrow q)$ is logically equivalent to

A $\quad{ }^{\sim} p \wedge \sim q$
B $\quad p^{\wedge} q$
C $\quad \sim p^{\wedge} q$
D $\quad \mathrm{p}^{\wedge \sim} \mathrm{q}$

Solution

p	q	$\sim p$	$\sim p \rightarrow q$	$\sim(\sim p \rightarrow q)$	$(\sim p \vee \sim q)$
T	T	F	T	F	F
F	T	T	T	F	F
T	F	F	T	F	F
F	F	T	F	T	T

\#1333009

The total number of irrational terms in the binomial expansion of $\left(7 \frac{1}{5}-3 \frac{1}{10}\right)^{60}$ is :

A 55

B 49

C 48
D 54
Solution
General term $T_{r+1}={ }^{60} C_{r} 7^{\frac{60-5}{5}} 3^{\frac{r}{10}}$
\therefore for rotational term, $r=0,10,20,30,40,50,60 \Rightarrow$ no of rational terms $=7$
\therefore number of irrational terms $=54$

\#1333045

The mean and the variance of five observation are 4 and 5.20 , respectively. If three of the observations are 3,4 and 4 ; then the absolute value of the difference of the other two observations, is:

Solution
\Rightarrow Let other two observations are x, y
\therefore Mean $=\frac{3+4+4+x+y}{5}$
$\therefore \quad 4=\frac{11+x+y}{5}$
$\therefore \quad 20=11+x+y$
$\therefore \quad x+y=9$
Variance $=\frac{1}{5}\left[(3-4)^{2}+(4-4)^{2}+(4-4)^{2}+(x-4)^{2}+(y-4)^{2}\right]$
$5.20=\frac{1}{5}\left[1+0+0+x^{2}-8 x+16+y^{2}-8 y+16\right]$
$26=33+x^{2}+y^{2}-8(x+y)$
$26=33+x^{2}+y^{2}-8(9)$
[From (1)]
$\therefore \quad x^{2}+y^{2}=65$
$x+y=9 \quad[$ From (1) $]$
$x^{2}+y^{2}+2 x y=81 \quad$ [Squaring both sides]
$65+2 x y=81 \quad[$ From (2)]
$2 x y=16$
$x y=8$
$\therefore \quad x=\frac{8}{y}$
Substituting (3) in (1),
$\frac{8}{y}+y=9$
$y^{2}+8=9 y$
$y^{2}-9 y+8=0$
$\therefore \quad y=8$ and $y=1$
For $y=8$
$x+8=9$
$\therefore \quad x=1$
\therefore We get $x=1$ and $y=8$
\therefore Difference between other two observation $=8-1=7$

\#1333088

then the length of a latus rectum of the ellipse is:

A $2 \sqrt{2}$

B 2

C 4

D $\quad 4 \sqrt{2}$

Solution
$m_{S B} . m_{S B}=-1$
$b^{2}=a^{2} e^{2} \ldots \ldots \ldots$ (i)
$\frac{1}{2} S^{\prime} B . S B=8$
S'B. SB $=16$
$a^{2} e^{2}+b^{2}=16$......(ii)
$b^{2}=a^{2}\left(1-e^{2}\right) \ldots$...(iii)
using (i), (ii), (iii) $a=4$
$b=2 \sqrt{2}$
$e=\frac{1}{\sqrt{2}}$
$\therefore \quad(L . R)=.\frac{2 b^{2}}{a}=4$

\#1333114

In a class of 60 students, 40 opted for NCC, 30 opted for NSS and 20 opted for both NCC and NSS. If one of these students is selected at random, then the probability that the student selected has opted neither for NCC nor for NSS is :

A $\frac{2}{3}$
B $\quad \frac{1}{6}$
C $\frac{1}{3}$
D $\frac{5}{6}$

Solution

Let A denotes the students of NCC
B denotes the students of NSS.
total number of students $n(S)=60$
Given,
number of students opted for NCC $n(A)=40$
number of students opted for NSS $n(B)=30$
number of students opted for both $=20$
$n(A)=40, n(B)=30$
$n(A \cap B)=20$
$n(A \cup B)=n(A)+n(B)-n(A \cap B)$
$n(A \cup B)=50$
students opted neither NCC nor NSS $=n(S)-n(A \cup B)$
P (students opted neither NCC nor NSS) $=1-P(A \cup B)$
$=1-\frac{50}{60}$
$=\frac{1}{6}$

Since there are a total of 60 students in the class, therefore,
$n(S)=60$
Let A and B be the event that a student opted for NCC and NSS respectively.
Given:-
$n(A)=40$
$n(B)=30$
$n(A \cap B)=20$
Therefore,
$P(A)=\frac{n(A)}{n(S)}=\frac{40}{-} \begin{aligned} & 2 \\ & 60\end{aligned}$
$P(B)=\frac{n(B)}{n(S)}=\frac{30}{60}=\frac{1}{2}$
$P(A \cap B)=\frac{n(A \cap B)}{n(S)}=\frac{20}{60}=\frac{1}{3}$
Now, as we know that,
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$\begin{array}{lll}2 & 1 & 1 \\ - & - & -\end{array}$
$\therefore P(A \cup B)=\frac{-}{3}+\frac{-}{2}-\frac{-}{3}$
$\Rightarrow P(A \cup B)=\frac{4+3-2}{6}=\frac{5}{30}$
Now,
$P\left(A^{\prime} \cap B^{\prime}\right)=P(A \cup B)^{\prime}=1-P(A \cup B)$
$\therefore P\left(A^{\prime} \cup B^{\prime}\right)=1-\frac{5}{6}=\frac{6-5}{6}=\frac{1}{6}$
Thus the probability that the student selected has opted neither for NCC nor for NSS is $\begin{gathered}1 \\ -1 \\ 6\end{gathered}$.
Hence the correct answer is ${ }_{(B)_{6}}^{{ }_{6}^{1}}$.

\#1333141

The number of integral values of m for which the quadratic expression.
$(1+2 m) x^{2}-2(1+3 m) x+4(1+m), x \in R$, is always positive, is:

A 8
B 7

C 6

D 3
Solution
Expression is always positive it
$2 m+1>0 \Rightarrow m>-\frac{1}{2}$
\&
$D<0 \Rightarrow m^{2}-6 m-3<0$
$3-\sqrt{12}<m<3+\sqrt{12}$
\therefore integral value of $\mathrm{m} 0,1,2,3,4,5,6$

A $\frac{400}{3}$ gain
B $\frac{400}{3}$ loss
$\mathrm{C} \quad 0$
D $\frac{400}{9}$ loss

Solution

Expected Gain/Loss =
$\left.=w \times 100+L w(-50+100)+L^{2} W-50-50+100\right)+L^{3}(-150)$
$=\frac{1}{3} \times 100+\frac{2}{3} \cdot \frac{1}{3}(50)+\square \frac{2}{3} \square^{2} \square \frac{1}{3} \square(0)+\square \frac{2}{3} \square^{3}(-150)=0$
here w denotes probability that outcome 5 or $6\left(w=\frac{2}{6}=\frac{1}{3}\right)$
here denotes probability that outcome
$1,2,3,4\left(L=\frac{4}{6}=\frac{2}{3}\right)$

\#1333219

If a curve passes through the point $(1,-2)$ and has slope of the tangent at any point (x, y) on it as $\frac{x^{2}-2 y}{x}$, then the curve also passes through the point:

A $(-\sqrt{2}, 1)$
B $(\sqrt{3}, 0)$
C $(-1,2)$

D $\quad(3,0)$

Solution

$\frac{d y}{d x}=\frac{x^{2}-2 y}{x} \quad$ (Given)
$\frac{d y}{d x}+2 \frac{y}{x}=x$
I.F. $=e^{\int \frac{2}{x} d x=x^{2}}$
$\therefore \quad y \cdot x^{2}=\int x_{x}^{2} d x+C$
$=\frac{x^{4}}{y}+C$
hence bpasses through $(1,-2) \Rightarrow C=-\frac{9}{4}$
$\therefore \quad y x^{2}=\frac{x^{4}}{4}-\frac{9}{4}$
Now check option(s), which is satisfied by option (ii)

\#1333238

Let z_{1} and z_{2} be two complex numbers satisfying $\left|z_{1}\right|=9$ and $\left|z_{3}-3-4 i\right|=4$. Then the minimum value of $\left|z_{1}-z_{2}\right|$ is:

A 0

B 1

C $\sqrt{2}$

D 2

Solution

$\left|z_{1}\right|=9,\left|z_{2}-(3+4 i)\right|=4$
$C_{1}(0,0)$ radius $r_{1}=9$
$C_{2}(3,4)$ radius $r_{2}=4$
$C_{1} C_{2}=\left|r_{1}-r_{2}\right|=5$
\therefore circle touches internally
$\therefore\left|z_{1}-z_{2}\right|$ min $=0$

\#1333255

If the sum of the first 15 terms of the series $\square \frac{3}{4} \square^{3}+\square 2 \frac{1}{2} \square^{3}+\square 2 \frac{1}{4} \square^{3}+3^{3}+\square 3 \frac{3}{4} \square^{3}+\ldots \ldots \ldots \ldots$ is equal to 225 k . then k is equal to:

A 9
B 27
C 108

D 54

Solution
$\square \frac{3}{4} \square^{3}+\square \frac{6}{4} \square^{3}+\square \frac{9}{4} \square^{3}+\square \frac{12}{4} \square^{3}+\ldots \ldots \ldots \ldots \ldots .15$ term
$=\frac{27}{64} \sum_{r=1}^{15} r^{3}$
$=\frac{27}{64} \cdot\left[\frac{15(15+1)}{2}\right]^{2}$
$=225 \mathrm{~K}$ (zgiven in question)
$K=27$

