\#1330388

A 4.0 mm

B $\quad 3.0 \mathrm{~mm}$

C $\quad 5.0 \mathrm{~mm}$

D Zero
Solution
$\frac{F}{A}=y \cdot \frac{\Delta P}{\rho}$
$\triangle P a F \quad$...(i)
$T=m g$
$T=m g-f_{B}=m g-\frac{m}{\rho_{D}} . \rho_{l} \cdot g$
$=\left(1-\frac{\rho_{\rho}}{\rho_{b}}\right)^{\mathrm{mg}}$
$=\left(1-\frac{2}{8}\right) m g$
$T^{\prime}=\frac{3}{4} m g$

For (i),
$\frac{\Delta \rho^{\prime}}{\Delta \rho}=\frac{T^{\prime}}{T}=\frac{3}{4}$
$\Delta \rho^{\prime}=\frac{3}{4} \cdot \Delta \varphi=3 \mathrm{~mm}$

\#1330469

Formation of real image using a biconvex lens is shown below:
If the whole set up is immersed in water without disturbing the object and the screen position, what will one observe on the screen?

Solution

From $\frac{1}{f}=\left(\mu_{r e l}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
Focal length of lens will change hence image disappears from the screen

\#1330523

 The length of the cylinder above the piston is P_{1}, and that below the piston is P_{2}, such that $P_{1}>P_{2}$. Each part of the cylinder contains n moles of an ideal gas at equal temperature T. If the piston is stationary, its mass, m, will be given by :
(R is universal gas constant and g is the acceleration due to gravity)

A

$$
\frac{n R T}{g}\left[\frac{1}{\rho_{2}}+\frac{1}{\rho_{1}}\right]
$$

B $\frac{n R T}{g}\left[\frac{P_{1}-P_{2}}{P_{1} P_{2}}\right]$
C $\frac{R T}{g}\left[\frac{2 P_{1}+e_{2}}{e_{1} e_{2}}\right]$
D $\quad \frac{R T}{g}\left[\frac{P_{1}-3 P_{2}}{P_{1} P_{2}}\right]$
Solution
$P_{2} A=P_{1} A+m g$
$\frac{n R T \cdot A}{A l_{2}}=\frac{n R T \cdot A}{A l_{1}}+m g$
$n R T\left(\frac{1}{P_{2}}-\frac{1}{P_{1}}\right)=m g$
$m=\frac{n R T}{g}\left(\frac{\rho_{1}-\rho_{2}}{\rho_{1} \rho_{2}}\right)$

\#1330621

A simple motion is represented by:
$y=5(\sin 3 \pi t+\sqrt{3} \cos 3 \pi t) c m$
The amplitude and time period of the motion are:

A $5 \mathrm{~cm}, \frac{3}{2} \mathrm{~s}$
B $5 \mathrm{~cm}, \frac{2}{3} \mathrm{~s}$
C $\quad 10 \mathrm{~cm}, \frac{3}{2} \mathrm{~s}$

D $10 \mathrm{~cm}, \frac{2}{3} \mathrm{~s}$
Solution
$y=5[\sin (3 \pi t)+\sqrt{3} \cos (3 \pi t)]$
$=10 \sin \left(3 \pi t+\frac{\pi}{3}\right)$

Amplitude $=10 \mathrm{~cm}$
$T=\frac{2 \pi}{\omega}=\frac{2 \pi}{3 \pi}=\frac{2}{3} \sec$

\#1330682

In the given circuit diagram, the currents, $I_{1}=-0.3 A, I_{4}=0.8 A$ and $I_{5}=0.4 A$ are flowing as shown. The currents $I_{2} I_{3}$ and I_{6} respectively, are:

A $1.1 A, 0.4 A, 0.4 A$
B $\quad-0.4 A, 0.4 A, 1.1 A$

C $\quad 0.4 A, 1.1 A, 0.4 A$

D 1.1A, - 0.4A, 0.4A
Solution
From $K C L, I_{3}=0.8-0.4=0.4 \mathrm{~A}$
$I_{2}=0.4+0.4+0.3$
$=1.1 \mathrm{~A}$
$I_{6}=0.4 A$

\#1330755

A particle of mass 20 g is released with an initial velocity $5 \mathrm{~m} / \mathrm{s}$ along the curve from the point A, as shown in the figure. The point A is at height h from point B. The particle slides along the frictionless surface. When the particle reaches point B, its angular momentum about O will be :
(Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

A $8 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
B $\quad 6 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
C $\quad 3 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$

D $\quad 2 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$
Solution

Work Energy Theorem from A to B
$m g h=\frac{1}{g} m V_{B}^{2}-\frac{1}{g} m V_{A}^{2}$
$2 g h=v_{B}^{2}-v_{A}^{2}$
$2 \times 10 \times 10=v_{B}^{2}-5^{2}$
$v_{B}=15 \mathrm{~m} / \mathrm{s}$

Angular momentum about 0
$L_{0}=m v r$
$=20 \times 10^{-3} \times 20$
$L_{0}=6 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$

\#1330852

In the above circuit, $C=\frac{\sqrt{3}}{2} \mu F, R_{2}=20 \Omega, L=\frac{\sqrt{3}}{10} H$ and $R_{1}=10 \Omega$. Current in $L-R_{1}$ path is I_{1} and in $C-R_{2}$ path it is I_{2}. the voltage of A.C. source is given by $V=200 \sqrt{2} \sin (100 t)$ volts. The phase difference between I_{1} and I_{2} is:

A 30°
B 0°
C 90°
D 60°
Solution
$x_{e}=\frac{1}{\omega_{c}}=\frac{4}{10^{-6} \times \sqrt{3} \times 100}=\frac{2 \times 10^{4}}{\sqrt{3}}$
$\tan \frac{\theta}{2} \frac{x_{e}}{R_{e}}=\frac{10^{3}}{\sqrt{3}}$
θ_{1} is close to 90
For $L-R$ circuit
$x_{L}=w_{L}=100 \times \frac{\sqrt{3}}{10}=\sqrt{3}$
$R_{1}=10$
$\tan \theta_{2}=\frac{x_{e}}{R}$
$\tan \theta_{2}=\sqrt{3}$
$\Theta_{2}=60$
So phase difference comes out $90+60=150$.
Therefore Ans. is Bonus If R_{2} is $20 K \Omega$ then phase difference comes out to be $60+30=90^{\circ}$

\#1331196

A paramagnetic material has 10^{28} atoms/ m^{3}. Its magnetic susceptibility at temperature 350 K is 2.8×10^{-4}. Its susceptibility at $300 K$ is:

A $\quad 3.676 \times 10^{-4}$

B $\quad 3.726 \times 10^{-4}$
C $\quad 3.267 \times 10^{-4}$
D $\quad 3.672 \times 10^{-4}$
Solution
$x \propto \frac{1}{T_{c}}$
curie law for paramagnetic substane
$\frac{x_{1}}{x_{2}}=\frac{T_{c 2}}{T_{c 1}}$
$\frac{2.8 \times 10^{-4}}{x_{2}}=\frac{300}{350}$
$x_{2}=\frac{2.8 \times 350 \times 10^{-4}}{300}$
$=3.266 \times 10^{-4}$

\#1331253

A 10 m long horizontal wire extends from North East to South West. It is falling with a speed of $5.0 \mathrm{~m}_{S}{ }^{-1}$, at right angles to the horizontal component of the earth's magnetic field, of $0.3 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}$. The value of the induced emf in wire is:

A $\quad 2.5 \times 10^{-3} V$
B $\quad 1.1 \times 10^{-3} V$
C $\quad 0.3 \times 10^{-3} \mathrm{~V}$
D $\quad 1.5 \times 10^{-3} \mathrm{~V}$
Solution
Induied emf $=B v P \sin 45$
$=0.3 \times 10^{-4} \times 5 \times 10 \times \frac{1}{\sqrt{2}}$
$=1.1 \times 10^{-3} V$

\#1331361

In the figure, given that $V_{B B}$ supply can vary from 0 to $5.0 \mathrm{~V}, V_{C C}=5 \mathrm{~V}, \beta_{d c}=200, R_{B}=100 \mathrm{k} \Omega, R_{C}=1 \mathrm{k} \Omega$ and $V_{B E}=1.0 \mathrm{~V}$. The minimum base current and the input voltage at which the transistor will go to saturation, will be respectively:

C $\quad 25 \mu \mathrm{~A}$ and 2.5 V

D $\quad 20 \mu A$ and $2.8 V$
Solution
At saturation, $V_{C E}=0$
$V_{C E}=V_{C C}-I_{C} R_{C}$
$I_{C}=\frac{V_{C C}}{R_{C}}=5 \times 10^{-3} \mathrm{~A}$
Given
$\beta_{d c}=\frac{I_{C}}{I_{B}}$
$I_{B}=\frac{5 \times 10^{-3}}{200}$
$I_{B}=25 \mathrm{muA}$
At input side
$V_{B B}=I_{B} R_{B}+V_{B E}$
$=(25 \mathrm{~mA})(100 \mathrm{k} \Omega)+1 \mathrm{~V}$
$V_{B B}=3.5 \mathrm{~V}$
\#1331482

In the circuit shown, find C if the effective capacitance of the whole circuit is to be $0.5 \mu F$. All values in the circuit are in μF.

A $\quad \frac{7}{10} \mu F$
B $\quad \frac{7}{11} \mu F$
C $\quad \frac{6}{5} \mu F$
D $\quad 4 \mu F$
Solution

From equs.
$\frac{\frac{7 C}{3}}{\frac{7}{3}+C}=\frac{1}{2}$
$\Rightarrow 14 C=7+3 C$
$\Rightarrow C=\frac{7}{11}$

\#1331553

Two satellites, A and B, have masses m and $2 m$ respectively. A is in circular orbit of radius R, and B is in a circular orbit of radius $2 R$ around the earth. The ratio of their kinetic energies, T_{A} / T_{B} is:

A 2
B $\sqrt{\frac{1}{2}}$

C $\quad 1$
D $\frac{1}{2}$
Solution
Orbital velocity $V=\sqrt{\frac{G M e}{r}}$
$T_{A}=\frac{1}{2} m_{A} V_{A}^{2}$
$T_{B}=\frac{1}{2} m_{B} V_{B}^{2}$
$\Rightarrow \frac{T_{A}}{T_{B}}=\frac{m \times \frac{G m}{R}}{2 m \times \frac{G m}{2 R}}$
$\Rightarrow \frac{T_{A}}{T_{B}}=1$

\#1331597

The moment of inertia of a solid sphere, about an axis parallel to its diameter and at a distance of x from it, is $/(x)^{\prime}$. Which one of the graphs represents the variation of $/(x)$ with x correctly?

A

B

C

D

Solution
$I_{x}=I_{c m}+m_{x}{ }^{2}$
$I=\frac{2}{5} m R^{2}+m_{X}{ }^{2}$
Parabola opening upward

\#1331622

When a certain photosensitive surface is illuminated with monochromatic light of frequency v, the stopping potential for the photocurrent is $\frac{V_{0}}{2}$. When the surface is illuminated by monochromatic light of frequency $\frac{v}{2}$, the stopping potential is $-V_{0}$. the threshold frequency for photoelectric emission is:

A $\frac{3 v}{2}$
B $\quad 2 v$
C $\quad \frac{4}{3} v$
D $\frac{5 v}{3}$

Solution

$h v=W+\frac{v_{o}}{2} e$
$\frac{h v}{2}=W+v_{o} e$
on solving we get, $W=3 / 2 h v$
$h v_{o}=3 / 2 h v$
$v_{o}=3 / 2 v$

\#1331679

A galvanometer, whose resistance is 50 ohm, has 25 division in it. When a current of $4 \times 10^{-4} \mathrm{~A}$ passes through it, is its needle (pointer) deflects by one division. To use this galvanometer as a voltmeter of range 2.5 V , it should be connected to a resistance of:

A 6250 ohm

B
250 ohm
C
200 ohm

Solution

$I_{g}=4 \times 4 \times 10^{-4} \times 25=10^{-2} A$
$2.5=(50+R) 10^{-2} \therefore=200 \Omega$

\#1331690

 rotational speed is 2 rotations per second, then the difference in the heights between the centre and the sides, in cm , will be:

A $\quad 1.2$
B 0.1
C 2.0
D $\quad 0.4$

Solution

$y=\frac{\omega^{2} x^{2}}{2 g}=\frac{(2 \times 2 \pi)^{2} \times(0.05)^{2}}{20} \sim 2 \mathrm{~cm}$
\#1331716

Two particles A, B are moving on two concentric circles of radii R_{1} and R_{2} with equal angular speed ω. At $t=0$, their positions and direction of motion are shown in the figure: The relative velocity $\vec{U} A^{-} \vec{v} B$ at $t=\frac{\pi}{2 \omega}$ is given by:

A $\quad-\omega\left(R_{1}+R_{2}\right) \hat{i}$
B $\quad \omega\left(R_{1}+R_{2}\right) \hat{i}$
C $\quad \omega\left(R_{1}-R_{2}\right) \hat{i}$
D
$\omega\left(R_{2}-R_{1}\right) \hat{i}$
Solution
$\theta=\omega t=\omega \frac{\pi}{2 \omega}=\frac{\pi}{2}$.
$\vec{V} A-\vec{v} S=\omega R_{1}(-\hat{i})-\omega R_{2}(-i)$

\#1331764

A plano-convex lens (focal length f_{2}, refractive index μ_{2}, radius of curvature R) fits exactly into a plano-concave lens (focal length f_{1}, refractive index μ_{1}, radius of curvature R). Their plane surfaces are parallel to each other. Then, the focal length of the combination will be :

A $f_{1}-f_{2}$
B $\quad f_{1}+f_{2}$
C $\frac{R}{\mu_{2}-\mu_{1}}$
D $\frac{2 f_{1} f_{2}}{f_{1}+f_{2}}$
Solution
$\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}=\frac{1-\mu_{1}}{R}+\frac{\mu_{2}-1}{R}$

\#1331921

Let P, r, c and v represent inductance, resistance, capacitance and voltage, respectively. The dimension of $\frac{P}{r C V}$ is $S /$ units will be:

A [LTA]
B $\left[L A^{-2}\right]$
C $\left[A^{-1}\right]$
D $\left[L T^{2}\right]$
Solution
$\left[\begin{array}{l}P \\ r\end{array}\right]=T$
$[C V]=A T$

So, $\left[\frac{P}{r C V}\right]=\frac{T}{A T}=A^{-1}$

\#1331967

In a radioactive decay chain, the initial nucleus is ${ }_{90}^{232} T h$. At the end there are 6α - particles and 4β - particles which are emitted. If the end nucleus, If ${ }_{Z} X, A$ and Z are given by:

A $\quad A=208 ; Z=80$

B $\quad A=202 ; Z=80$

C $\quad A=200 ; Z=81$

D $\quad A=208 ; Z=82$
Solution
${ }_{90}^{232} \mathrm{Th} \rightarrow{ }_{78}^{208} Y+{ }_{2}^{4} \mathrm{He}$
${ }_{78}^{208} Y \rightarrow{ }_{82}^{208} X+4 \beta$ particle

\#1332056

The mean intensity of radiation on the surface of the Sun is about $10^{8} \mathrm{~W} / \mathrm{m}^{2}$. The rms value of the corresponding magnetic field is closest to:

A $\quad 10^{2} T$
B $\quad 10^{-4} T$
C $\quad 1 T$

D $\quad 10^{-2} T$

Solution
$I=\varepsilon_{0} C E_{r m s}^{2} \& E_{r m s}=c B_{r m s}$
$I=\varepsilon_{0} C^{3} B_{r m s}^{2}$
$B_{\text {rms }}=\sqrt{\frac{1}{\epsilon_{0} C^{3}}}$
$B_{r m s}=10^{-4}$

\#1332071

A resonance tube is old and has jagged end. It is still used in the laboratory to determine velocity of sound in air. A tuning fork of frequency 512 Hz produces first resonance when the tube is filled with water to a mark 11 cm below a reference mark, near the open end of the tube. The experiment is repeated with another fork of frequency 256 Hz which produces first resonance when water reaches a mark 27 cm below the reference mark. The velocity of sound in air, obtained in the experiment, is close to:

A $328 m_{S^{-1}}$
B $\quad 322 m_{s}{ }^{-1}$

C $\quad 341 m_{s}{ }^{-1}$

D $\quad 335 \mathrm{~ms}^{-1}$

Solution

$\frac{\lambda_{1}}{4}=11 \mathrm{~cm}$ so, $\frac{v}{512 \times 4}=11 \mathrm{~cm}$
$\frac{\lambda_{2}}{4}=27 \mathrm{~cm} \mathrm{so}, \frac{v}{256 \times 4}=27 \mathrm{~cm}$
(2) - (1)
$\frac{v}{256 \times 4} \times 0.5=0.16$
$v=0.16 \times 2 \times 4 \times 256$
$v=328 \mathrm{~m} / \mathrm{s}$

An ideal gas is enclosed in a cylinder at pressure of 2 atm and temperature, 300 K . The mean time between two successive collisions is $6 \times 10^{-8} \mathrm{~s}$. If the pressure is doubled and temperature is increased to 500 K , the mean time between two successive collisions will be close to:

A $\quad 4 \times 10^{-8} s$
B $\quad 3 \times 10^{-6} s$
C $\quad 2 \times 10^{-7} s$
D $0.5 \times 10^{-8} s$
Solution
ta $\frac{\text { Volume }}{\text { Velocity }}$

Volume $\alpha \frac{T}{P}$
$\therefore t a \frac{\sqrt{T}}{P}$
$\frac{t_{1}}{6 \times 10^{-8}}=\frac{\sqrt{500}}{2 P} \times \frac{P}{\sqrt{300}}$
$t_{1}=3.8 \times 10^{-8}$
$=4 \times 10^{-8}$

\#1332120

The charge on a capacitor plate in a circuit, as a function of time, is shown in the figure:
What is the value of current at $t=4 s$?

A $3 \mu A$

B $\quad 2 \mu A$
C Zero
D $\quad 1.5 \mu \mathrm{~A}$

Solution

Since $\left.\frac{d q}{d t}\right|_{t=4 s}=0$
\therefore current $=0$
\#1332128

A block kept on a rough inclined plane, as shown in the figure, remains at rest upto a maximum force $2 N$ down the inclined plane. The maximum external force up the inclined plane that does not move the block is 10 N . The coefficient of static friction between the block and the plane is :

A $\frac{2}{3}$

B	$\sqrt{3}$
2	

C $\frac{\sqrt{3}}{4}$
D $\frac{1}{4}$
Solution
$2+m g \sin 30=\mu m g \cos 30^{\circ}$
$10=m g \sin 30+\mu m g \cos 30^{\circ}$
$=2 \mu \mathrm{mg} \cos 30-2$
$6=\mu m g \cos 30$
$4=m g \sin 30$
$\frac{3}{2}=\mu \times \sqrt{3}$
$\mu=\frac{\sqrt{3}}{2}$

\#133222

 energy. The mass of the nucleus is:-

A $4 m$

B $\quad 3.5 \mathrm{~m}$

C $2 m$

D $\quad 1.5 \mathrm{~m}$

Solution

$$
m v_{0}=m v_{2}-m v_{1}
$$

$$
\frac{1}{2} m v_{1}^{2}=0.36 \times \frac{1}{2} m V_{0}^{2}
$$

$$
v_{1}=0.6 v_{0}
$$

$$
\frac{1}{2} M V_{2}^{2}=0.64 \times \frac{1}{2} m V_{0}^{2}
$$

$$
v_{2}=\sqrt{\frac{m}{M}} \times 0.8 V_{0}
$$

$$
m V_{0}=\sqrt{m M} \times 0.8 V_{0}-m \times 0.6 V_{0}
$$

$$
\Rightarrow 1.6 \mathrm{~m}=0.8 \sqrt{\mathrm{mM}}
$$

$$
4 m^{2}=m M
$$

\#1332252

A soap bubble, blow by a mechanical pump at the mough of a tube, increases in volume, with time, at a constant rate. The graph that correctly depicts the time dependence of pressure inside the bubble is given by :-

A

B

C

D

Solution
$V=c t$
$4 / 3 \pi_{r}{ }^{3}=c t$
$r=k t^{1 / 3}$
$P=P_{0}+\frac{4 T}{k t^{1 / 3}}$
$P=P_{o}+c \frac{1}{t^{1 / 3}}$

\#1332264

To double the covering range of TV transmittion tower, its height shoould be multiplied by:-

A $\frac{1}{\sqrt{2}}$
B 4
C $\sqrt{2}$

D 2
Solution
Range $=\sqrt{2 h R}$
To double the range h have to be made 4 times

\#1332270

A parallel plate capacitor with plates of area $1 \mathrm{~m}^{2}$ each, area t a separation of 0.1 m . If the electric field between the plates is $100 \mathrm{~N} / \mathrm{C}$, the magnitude of charge each plate is:-
$\left(\right.$ Take $\varepsilon_{0}=8.85 \times 10^{-12} \frac{c^{2}}{N-m^{2}}$)

A $\quad 7.85 \times 10^{-10} \mathrm{C}$
B $\quad 6.85 \times 10^{-10} \mathrm{C}$
C $\quad 9.85 \times 10^{-10} \mathrm{C}$
D $8.85 \times 10^{-10} \mathrm{C}$
Solution
$E=\frac{\sigma}{\epsilon_{0}}=\frac{Q}{A \epsilon_{0}}$
$Q=A E \epsilon_{0}$
$Q=(1)(100)\left(8.85 \times 10^{-12}\right)$
$Q=8.85 \times 10^{-19} \mathrm{C}$

\#1332328

In a Frank-Hertz experiments, an electron of energy 5.6 eV passes through mercury vapour and emerges with an energy 0.7 eV . The minimum wavelength of photons emitted by mercury atoms is close to:-

A 2020 nm
B 220 nm
C 250 nm

D $\quad 1700 \mathrm{~nm}$

Solution
Energy retained by mercury vapour $=5.6 \mathrm{ev}-0.7 \mathrm{ev}=4.9 \mathrm{ev}$
$\frac{12400}{4.9}=2500 \mathrm{~A}$

\#1331238

lodine reacts with concentrated HNO_{3} to yield Y along with other products. The oxidation state of iodine in Y is:

A 5

B 3

C $\quad 1$

D $\quad 7$

Solution

$\mathrm{I}_{2}+10 \mathrm{NHO}_{3} \rightarrow 2 \mathrm{HIO}_{3}+10 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
Here the product Y is HIO_{3}
In HIO_{3} oxidation state of iodine is +5

The major product of the following reaction is:

A

B

C

D

Solution

DIBAL-H will reduce cyanides and esters to aldehydes.

\#1331317

In a chemical reaction, $A+2 B \stackrel{K}{\rightleftharpoons} 2 C+D$, the initial concentration of B was 1.5 times of the concentration of A, but the equilibrium concentrations of A and B were found to be equal. The equilibrium constant (K) for the aforesaid chemical reaction is:

A 16
B 4
C $\quad 1$
D $\frac{1}{4}$

Solution

$\underset{\substack{t=0 a_{0} \\ t=t a_{e q} a_{0}-x}}{A}+\underset{\substack{1.5 a_{0} \\ 1.5 a_{0}-2 x}}{2 B} \rightleftharpoons \underset{\substack{0 \\ 2 x}}{2 C}+\underset{\substack{0 \\ x}}{D}$
At equilibrium $[A]=[B]$
$\underset{t=t_{\text {eq }}}{a_{0}-x} \underset{0.5 a_{0}}{1.5 a_{0}}-\underset{0.5 a_{0}}{2 x} \Rightarrow x=\underset{a_{0} 0.5 a_{0}}{0.5 a_{0}}$
$K_{C}=\frac{[C]^{2}[D]}{[A][B]^{2}}=\frac{\left(a_{0}\right)^{2}\left(0.5 a_{0}\right)}{\left(0.5 a_{0}\right)\left(0.5 a_{0}\right)^{2}}=4$.

\#1331365

Two solids dissociated as follows
$A(s) \rightleftharpoons B(g)+C(g) ; K_{p_{1}}=x a t m^{2}$
$D(s) \rightleftharpoons C(g)+E(g) ; K_{p_{2}}=y \mathrm{~atm}^{2}$
The total pressure when both the solids dissociate simultaneously is:

A $\quad x^{2}+y^{2} a t m$
B $\quad x^{2}-y^{2} a t m$
C $2(\sqrt{x+y})$ atm
D $\sqrt{x+y}$ atm
Solution
$A(s) \rightleftharpoons \underset{P_{1}}{B(g)}+\underset{P_{1}}{(g)} \operatorname{K}_{P_{1}}=x=P_{x=P_{1}\left(P_{1}+P_{2}\right)}^{=} \cdot P_{C} \ldots(1)$
$D(s) \rightleftharpoons \underset{P_{2}}{C(g)}+\underset{P_{2}}{E(g)} K_{P_{2}}=\underset{y=\left(P_{1}+P_{2}\right)\left(P_{2}\right)}{y=P_{C}} \cdot P_{E} \ldots(2)$
Adding (1) and (2)
$x+y=\left(P_{1}+P_{2}\right)^{2}$
Now total pressure
$P_{T}=P_{C}+P_{B}+P_{E}$
$=\left(P_{1}+P_{2}\right)+P_{1}+P_{2}=2\left(P_{1}+P_{2}\right)$
$P_{T}=2(\sqrt{x+y})$.

A A

B $\quad 3 A$

C $4 A$

D $2 A$
Solution
For same freezing point, molality of both solution should be same.
$m_{x}=m_{y}$
$\frac{4 \times 1000}{96 \times M_{x}}=\frac{12 \times 1000}{88 \times M_{y}}$
or, $M_{y}=\frac{96 \times 12}{4 \times 88} M_{x}=3.27 A$
Closest option is $3 A$.
For same freezing point, molality of both solution should be same.
$m_{x}=m_{y}$
$\frac{4 \times 1000}{96 \times M_{x}}=\frac{12 \times 1000}{88 \times M_{y}}$
or, $M_{y}=\frac{96 \times 12}{4 \times 88} M_{x}=3.27 A$
Closest option is $3 A$.

\#1331403

Poly- β-hydroxybutyrate - co- β-hydroxyvalerate(PHBV) is a copolymer of \qquad -.

A 3-hydroxybutanoic acid and 4-hydroxypentanoic acid

B 2-hydroxybutanoic acid and 3-hydroxypentanoic acid
C 3-hydroxybutanoic acid and 2-hydroxypentanoic acid
D 3-hydroxybutanoic acid and 3-hydroxypentanoic acid
Solution
$P H B V$ is a polymer of $3-$ hydroxy butanoic acid and $3-H y d r o x y$ pentanoic acid.
$P H B V$ is a polymer of $3-h y d r o x y b u t a n o i c$ acid and $3-H y d r o x y p e n t a n o i c$ acid.

\#1331411

Among the following four aromatic compounds, which one will have the lowest melting point?
A

B

C

D

Solution
M.P. of Napthalene $\simeq 80^{\circ} C$.

All other compounds have higher molecular weight than Naphthalene and thus have a higher melting point.

\#1331443

$\mathrm{CH}_{3} \mathrm{CH}_{2}-\stackrel{\substack{\mathrm{OH} \\ \mathrm{Ph} \\ \mathrm{C}}}{\mathrm{L}} \mathrm{CH}_{3}$ cannot be prepared by:

A $\mathrm{HCHO}+\mathrm{PhCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{MgX}$
B $\mathrm{PhCOCH}_{2} \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{MgX}$
C $\mathrm{PhCOCH}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Mg} \mathrm{X}$
D

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}+\mathrm{PhMgX}
$$

Solution

Formaldehyde on reaction with Grignard's reagent always forms primary alcohol.
The required product is tertiary alcohol.
Thus formaldehyde cannot be used to prepare it.

\#1331460

The volume of gas A is twice than that of gas B. The compressibility factor of gas A is thrice than that of gas B at same temperature. The pressures of the gases for equal number of moles are:

A $\quad 2 P_{A}=3 P_{B}$
B $\quad P_{A}=3 P_{B}$
C $\quad P_{A}=2 P_{B}$
D $\quad 3 P_{A}=2 P_{B}$
Solution
$V_{A}=2 V_{B}$
$Z_{A}=3 Z_{B}$
$\frac{P_{A} V_{A}}{n_{A} R T_{A}}=\frac{3 \cdot P_{B} \cdot V_{B}}{n_{B} \cdot R T_{B}}$
$2 P_{A}=3 P_{B}$.
$V_{A}=2 V_{B}$
$Z_{A}=3 Z_{B}$
$\frac{P_{A} V_{A}}{n_{A} R T_{A}}=\frac{3 \cdot P_{B} \cdot V_{B}}{n_{B} \cdot R T_{B}}$
$2 P_{A}=3 P_{B}$.

\#1331471

The element with $Z=120$ (not yet discovered) will be an/ a:

A transition metal

B inner-transition metal
alkaline earth metal

D alkali metal

Solution

$Z=120$
Its general electronic configuration may be represented as [Noble gas $] n s^{2}$, like other alkaline earth metals.
Thus the given element will be an alkaline earth metal.

\#1331490

Decomposition of X exhibits a rate constant of $0.05 \mu g /$ year. How many years are required for the decomposition of $5 \mu g$ of X into $2.5 \mu g$?

A

B 25
C $\quad 20$
D $\quad 40$

Solution

Rate constant $(K)=0.05 \mu g /$ year means zero order reaction
$t_{1 / 2}=\frac{a_{0}}{2 K}=\frac{5 \mu g}{2 \times 0.05 \mu g / \text { year }}=50$ year .

A

B

C

D

Solution

In the given reaction first, the chlorination of the compound takes place across double bond.
Once the chlorination is completed, the electrophilic aromatic substitution reaction takes place in presence of anhy. AlCl_{3} to give the product.

\#1331546

Given

Gas	H_{2}	CH_{3}	CO_{2}	SO_{2}
Critical	33	190	304	630

Temperature/ K
On the basis of data given above, predict which of the following gases shows least adsorption on a definite amount of charcoal?

A H_{2}
B CH_{4}

C SO_{2}
D CO_{2}

Solution

Smaller the value of a critical temperature of a gas, lesser is the extent of adsorption.
Here the critical temperature of the H_{2} gas is lowest.
So least adsorbed gas is H_{2}.

\#1331563

A

B

C

D

Solution
At higher temperature, rotational degree of freedom becomes active.
$C_{P}=\frac{7}{2} R($ Independent of $P)$
$C_{V}=\frac{5}{2} R$ (Independent of V)
Variation of U vs T is similar as C_{V} vs T.

\#1331586

The standard electrode potential E^{\ominus} and its temperature coefficient $\left(\frac{d E^{\ominus}}{d T}\right)$ for a cell are $2 V$ and $-5 \times 10^{-4} V K^{-1}$ at 300 K respectively. The cell reaction is $Z n(s)+C u^{2+}(a q) \rightarrow Z n^{2+}(a q+C u(s)$

The standard reaction enthalpy $\left(\triangle_{r} H^{\ominus}\right)$ at $300 K$ in $k J ~ \mathrm{~mol}^{-1}$ is:
$\left[\right.$ Use $R=8 j K^{-1} \mathrm{~mol}^{-1}$ and $\left.F=96,000 \mathrm{Cmol}^{-1}\right]$

A -412.8
B $\quad-384.0$

C $\quad 206.4$

D $\quad 192.0$
Solution
We have,
$\Delta G=\Delta H-\Delta S$---------(1)
Also,
$\Delta G=-n F E_{\text {cell }}=-2 \times 96500 \times 2=-4 \times 96500$
Now, $\Delta S=n F \frac{d E}{d T}=2 \times 96500 \times\left(-5 \times 10^{-4}\right)=96.5 J$
Now from equation (1)
$\Delta H=\Delta G+T \Delta S=-4 \times 96500+298 \times(-96.5) \approx-412.8$

\#1331592

The molecule that has minimum/no role in the formation of photochemical smog is:

A $\mathrm{CH}_{2}=\mathrm{O}$
B N_{2}
C O_{3}
D $\quad N O$

Solution

Chiefly $\mathrm{NO}_{2}, \mathrm{O}_{3}$ and hydrocarbon is responsible for the build-up smog.
Apart from these other compounds which are responsible for photochemical smog is $\mathrm{HCHO}, \mathrm{O}_{3}$, and NO .

\#1331596

In the Hall-Heroult process, aluminium is formed at the cathode. The cathode is made out of:

A platinum

B carbon

C pure aluminium

D copper

Solution
Hall-Heroult process is used for smelting of aluminium.
In the Hall-Heroult process the cathode is made of carbon. Also, here anode is also made up of carbon.

\#1331611

Water samples with $B O D$ values of $4 p p m$ and $18 p p m$, respectively, are:

A highly polluted and clean

B highly polluted and highly polluted

C clean and highly polluted
D clean and clean

Solution

Clean water would have $B O D$ value of lass than 5 ppm whereas highly polluted water could have a $B O D$ value of 17 ppm or more. Clean water would have $B O D$ value of lass than 5 ppm whereas highly polluted water could have a $B O D$ value of 17 ppm or more.

\#1331621

$[A] \xrightarrow[\Delta]{\mathrm{H}_{3} \mathrm{O}^{+}}[\mathrm{B}]$
In the following reactions, products A and B are:

A

B

C

D

Solution
In the given reaction, first cross aldol condensation takes place to form compound A which on hydrolysis gives the compound B.

\#1331662

What is the work function of the metal if the light of wavelength $4000 \stackrel{\circ}{A}$ generates photoelectrons of velocity $6 \times 10^{5} \mathrm{~ms}^{-1}$ form it?
(Mass of electron $=9 \times 10^{-31} \mathrm{~kg}$
Velocity of light $=3 \times 10^{8} \mathrm{~ms}^{-1}$
Planck's constant $=6.626 \times 10^{-34} \mathrm{Js}$
Charge of electron $=1.6 \times 10^{-19} \mathrm{JeV}^{-1}$).

A $\quad 0.9 \mathrm{eV}$
B $\quad 4.0 \mathrm{eV}$
C $\quad 2.1 \mathrm{eV}$
D $\quad 3.1 \mathrm{eV}$
Solution

$$
h v=\phi+h v^{\circ}
$$

$\frac{1}{2} m v^{2}=h c\left(\frac{1}{\lambda}-\frac{1}{\lambda_{0}}\right)$
$h v=\phi+\frac{1}{2} m v^{2}$
$\phi=\frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{4000 \times 10^{-10}}-\frac{1}{2} \times 9 \times 10^{-31} \times\left(6 \times 10^{5}\right)^{2}$
$\phi=3.35 \times 10^{-19} \mathrm{~J}=\phi \simeq 2.1 \mathrm{eV}$.

\#1331667

Among the following compounds most basic amino acid is:

A lysine

B asparagine
C serine
D histidine
Solution
Histidine is the most basic amino acid in the given compound. This can be attributed to the fact that the histidine contains the most number of a basic nitrogen atom.

\#1331691

The metal d-orbitals that are directly facing the ligands in $K_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$ are:

A $d_{x z}, d_{y z}$ and $d_{z^{2}}$
B $\quad d_{x y}, d_{x z}$ and $d_{y z}$
C $\quad d_{x y}$ and $d_{x^{2}-y^{2}}$
D $\quad d_{x^{2}-y^{2}}$ and $d_{z^{2}}$
Solution
$K_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
$\mathrm{Co}^{+3} \rightarrow[A r]_{18} 3 d^{6}$.
Here since the coordination number of $C o$ is 6 , thus it will form an octahedral complex.
Thus according to CFT, the orbitals which are in the direction of metal is $d_{x^{2}-y^{2}}$ and $d_{z^{2}}$.

\#1331706

The hardness of a water sample (in terms of equivalents of CaCO_{3}) containing $10^{-3} \mathrm{M} \mathrm{CaSO}_{4}$ is:
(molar mass of $\mathrm{CaSO}_{4}=136 \mathrm{~g} \mathrm{~mol}^{-1}$).

A 100 ppm

B 50 ppm

C $\quad 10 \mathrm{ppm}$
D 90 ppm
ppm of CaCO_{3}
$\left(10^{-3} \times 10^{3}\right) \times 100=100 \mathrm{ppm}$

\#1331723

The correct order for acid strength of compounds $\mathrm{CH} \equiv \mathrm{CH}, \mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}$ and $\mathrm{CH}_{2}=\mathrm{CH}_{2}$ is as follows:

A $\quad \mathrm{CH} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}$

B
$\mathrm{HC} \equiv \mathrm{CH}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}$
C $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{Hc} \equiv \mathrm{CH}$
D $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}$
Solution
$\mathrm{CH} \equiv \mathrm{CH}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}$
(Acidic strength order).
More is the s-character, more is the acidic strength.
The s-character is maximum in $s p$ hybrid carbon atom followed by $s p^{2}$ and $s p^{3}$.
$\mathrm{CH} \equiv \mathrm{CH}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}$
(Acidic strength order).

\#1331730

$M n_{2}(\mathrm{CO})_{10}$ is an organometallic compound due to the presence of:

A $M n-M n$ bond
B $M n-C$ bond
C $\quad M n-O$ bond

D $\quad C-O$ bond

Solution

Compounds having at least one bond between carbon and metal are known as organometallic compounds.

\#1331744

(A)

(C)

(D)

The increasing order of reactivity of the following compounds towards reaction with alkyl halides directly is:

A $(B)<(A)<(D)<(C)$

B $(B)<(A)<(C)<(D)$
C
$(A)<(C)<(D)<(B)$

D $(A)<(B)<(C)<(D)$

Solution
Nucleophiles are the compound which have excess of electron and are electron donating group.
here compound D is most nucleophile.

A
C

D

\#1331769

The pair of metal ions that can give a spin only magnetic moment of 3.9 BM for the complex $\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$, is:

A Cr^{2+} and Mn^{2+}
B V^{2+} and $C o^{2+}$
C $\quad \mathrm{V}^{2+}$ and Fe^{2+}
D Co^{2+} and Fe^{2+}

Solution

Spin only magnetic moment given as $\mu=\sqrt{n(n+1)}$
where $n=$ number of unpaired electron
3 unpaired e^{-}, spin only magnetic moment $=3.89 B . M$.

$$
\mathrm{V}^{2+} \rightarrow\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2} ;[\mathrm{Ar}]_{18} \begin{array}{|l|l|l|l|l|}
\hline 1 & 1 & 1 & & \\
3^{3} &
\end{array}
$$

\#1331801

In the following reaction
Aldehyde + Alcohol $\xrightarrow{\mathrm{HCl}}$ Acetal
Aldehyde Alcohol
$\mathrm{HCHO} \quad{ }^{t} \mathrm{BuOH}$
$\mathrm{CH}_{3} \mathrm{CHO} \quad \mathrm{MeOH}$
The best combinations is:

A HCHO and MeOH
B HCHO and ${ }^{t} \mathrm{BuOH}$
C $\mathrm{CH}_{3} \mathrm{CHO}$ and MeOH
D
$\mathrm{CH}_{3} \mathrm{CHO}$ and ${ }^{t} \mathrm{BuOH}$

Solution
rate $\propto \frac{1}{\text { steric crowding of aldehyde }}$
t-butanol can show formation of carbocation in acidic medium.

\#1331830

50 mL of 0.5 M oxalic acid is needed to neutralize 25 mL of soidum hydroxide solution. The amount of NaOH in 50 mL of the given sodium hydroxide solution is:

A $4 g$

B $\quad 20 g$

C $80 g$

D $\quad 10 g$
Solution
$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
$m_{e q}$ of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=m_{e q} \mathrm{NaOH}$
$50 \times 0.5 \times 2=25 \times M_{\mathrm{NaOH}} \times 1$
$\therefore M_{\mathrm{NaOH}}=2 M$
Now 1000 ml solution $=2 \times 40 \mathrm{gram} \mathrm{NaOH}$
$\therefore 50 \mathrm{ml}$ solution $=4 \mathrm{gram} \mathrm{NaOH}$

\#1331843

A metal on combustion in excess air forms X, X upon hydrolysis with water yields $H_{2} O_{2}$ and O_{2} along with another product. The metal is:

A $\quad R b$

B $\quad N a$

C $\quad M g$

D $L i$

Solution

The metal is $R b$.
$\mathrm{Rb}+\mathrm{O}_{2(\text { excess })} \rightarrow \mathrm{RbO}_{2}$
Here product X is $R b O_{2}$.
$2 \mathrm{RbO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{RbOH}+\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2}$

\#1330489

For $x>1$, if $(2 x)^{2 y}=4 e^{2 x-2 y}$, then $\left(1+\log _{\mathrm{e}} 2 x\right)^{2} \frac{\mathrm{dy}}{\mathrm{dx}}$ is equal to :

A $\quad \log _{e} 2 x$
B $\frac{x^{\log _{e} 2 x+\log _{e} 2}}{x}$
C $x \log _{e} 2 x$
D $\frac{x^{\log _{e} 2 x-\log _{e} 2}}{x}$
Solution
$(2 x)^{2 y}=4 e^{2 x-2 y}$
$2 y \operatorname{Pn} 2 x=\operatorname{Pn} 4+2 x-2 y$
$\mathrm{y}=\frac{\mathrm{x}+\ln 2}{1+\ln 2 \mathrm{x}}$
$y^{\prime}=\frac{(1+\ln 2 x)-(x+\ln 2) \frac{1}{x}}{(1+\ln 2 x)^{2}}$
$y^{\prime}(1+\ln 2 x)^{2}=\left[\frac{x \ln 2 x-\ln 2}{x}\right]$

\#1330529

The sum of the distinct real values of μ, for which the vectors, $\hat{\mu}_{i}+\hat{j}+\hat{k}, \quad \hat{i}+\hat{\mu j}+\hat{k}, \hat{i}+\hat{j}+\mu \hat{k}$ are co-planer, is:

A 2

B 0

C	-1

D 3

Solution
μ
$\left|\begin{array}{lll}1 & \mu & 1 \\ 1 & 1 & \mu\end{array}\right|=0$
$\mu\left(\mu^{2}-1\right)-1(\mu-1)+1(1-\mu)=0$
$\mu^{3}-\mu-\mu+1+1 \mu=0$
$\mu^{3}-3 \mu+2=0$
$\mu^{3}-1-3(\mu-1)=0$
$\mu=1, \mu^{2}+\mu-2=0$
$\mu=1, \mu=-2$
sum of distinct solutions $=-1$

\#1330611

Let S be the set of all points in $(-\pi, \pi)$ at which the function, $f(x)=\min \{\sin x, \cos x\}$ is not differentiable. Then S is a subset of which of the following?

A $\left\{-\frac{3 \pi}{4},-\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{\pi}{4}\right\}$
B $\quad\left\{-\frac{3 \pi}{4},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{4}\right\}$

C

D $\left\{-\frac{\pi}{4}, 0, \frac{\pi}{4}\right\}$
Solution

\#1330669

The product of three consecutive terms of a G.P. is 512 . If 4 is added to each of the first and the second of these terms, the three terms now from an A. P. Then the sum of the original three terms of the given G.P. is

A 36
B $\quad 24$

C 32
D 28
Solution
Let terms be
$\frac{a}{r}, a, a r \rightarrow G . P$
$\therefore a^{3}=512 \Rightarrow a=8$
$\frac{8}{r}+4,12,8 r \rightarrow A . P$.
$24=\frac{8}{r}+4+8 r$
$r=2, r=\frac{1}{2}$
$r=2(4,8,16)$
$r=\frac{1}{2}(16,8,4)$

Sum $=28$

\#1330727

The integral $\int \cos \left(\log _{e} x\right) d x$ is equal to :
(where C is a constant of integration)

A $\quad \frac{x}{2}\left[\sin \left(\log _{e} x\right)-\cos \left(\log _{e} x\right)\right]+C$
B $\frac{x}{2}\left[\cos \left(\log _{e} x\right)+\sin \left(\log _{e} x\right)\right]+C$
C $\quad x\left[\cos \left(\log _{e} x\right)+\sin \left(\log _{e} x\right)\right]+C$

D

$$
x\left[\cos \left(\log _{e} x\right)-\sin \left(\log _{c} x\right)\right]+C
$$

Solution
$I=\int \cos (P n x) d x$
$I=\cos (\ln x) \cdot x+\int \sin (\ln x) d x$
$\cos (P n x) x+\left[\sin (P n x) \cdot x-\int \cos (P n x) d x\right]$
$I=\frac{x}{2}[\sin (P n x)+\cos (\ln x)]+C$

\#1330777

Let $S_{k}=\frac{1+2+3+\ldots+k}{k}$. If $S_{1}^{2}+S_{2}^{2}++S_{10}^{2}=\frac{5}{12} A$ then A is equal to :

A 303
B 283

C $\quad 156$
D $\quad 301$
Solution
$S_{K}=\frac{K+1}{2}$
$\Sigma S_{k}^{2}=\frac{5}{12} A$
$\sum_{\mathrm{k}=1}^{10}\left(\frac{\mathrm{~K}+1}{2}\right)^{2}=\frac{2^{2}+3^{2}+-+11^{2}}{4}=\frac{5}{12} \mathrm{~A}$
$\frac{11 \times 12 \times 23}{6}-1=\frac{5}{3} A$
$505=\frac{5}{3} A, \quad A=303$

\#1330825

Let $S=\{1,2,3, \ldots, 100\}$. The number of non-empty subsets A of S such that the product of elements in A is even is :-

A $\quad 2^{50}\left(2^{50-1}\right)$
B $\quad 2^{100-1}$
C $\quad 2^{50-1}$
D $\quad 2^{50}+1$
Solution
$S=\{1,2,3-\ldots-100\}$
$=$ Total non empty subsets-subsets with product of element is odd
$=2^{100}-1-1\left[\left(2^{50}-1\right)\right]$
$=2^{100}-2^{50}$
$=2^{50}\left(2^{50}-1\right)$
\#1330868
If the sum of the deviations of 50 observations from 30 is 50 , then the mean of these observation is :

A 50
B $\quad 51$

C 30
D 31
Solution
$\sum_{i=1}^{50}\left(x_{i}-30\right)=50$
$\Sigma x_{i}-50 \times 30=50$
$\Sigma x_{i}=50+50 \times 30$

Mean $=\underset{x}{-}=\frac{\Sigma x_{i}}{n}=\frac{50 \times 30+50}{50}=30+1=31$

\#1330908

If a variable line, $3 x+4 y-\lambda=0$ is such that the two circles $x^{2}+y^{2}-2 x-2 y+1=0$ and $x^{2}+y^{2}-18 x-2 y+78=0$ are on its opposite sides,then the set of all values of λ is the interval :-
A
$[12,21]$

B $(2,17)$
C $(23,31)$

D $[13,23]$

Solution

Centre of circles are opposite side of line
$(3+4-\lambda)(27+4-\lambda)<0$
$(\lambda-7)(\lambda-31)<0$
$\lambda \in(7,31)$
distance from S_{1}
$\left|\frac{3+4-\lambda}{5}\right| \geq 1 \Rightarrow \lambda \in(-\infty, 2] \cup[(12, \infty]$
distance from S_{2}
$\left|\frac{27+4-\lambda}{5}\right| \geq 2 \Rightarrow \lambda \in(-\infty, 21] \cup[41, \infty)$
so $\lambda \in[12,21]$

\#1330944

A ratio of the $5^{\text {th }}$ term from the beginning to the $5^{\text {th }}$ term from the end in the binomial expansion of $\left(2^{1 / 3}+\frac{1}{2(3)^{1 / 3}}\right)^{10}$ is :
A $\quad 1: 4(16) \frac{1}{3}$
B $\quad 1: 2(6) \frac{1}{3}$
C $2(36), \frac{1}{3}: 1$
D $4(36) \frac{1}{3}: 1$

Solution

$\frac{T_{5}}{T_{5}^{1}}=\frac{{ }^{10 C_{4}}\left(2^{1 / 3}\right)^{10-4}\left(\frac{1}{2(3)^{1 / 3}}\right)^{4}}{10 C_{4}\left(\frac{1}{2\left(3^{1 / 3}\right)}\right)^{10-4}\left(2^{1 / 3}\right)^{4}}=4 .(36)^{1 / 3}$

\#1330984

let C_{1} and C_{2} be the centres of the circles $x^{2}+y^{2}-2 x-2 y-2=0$ and $x^{2}+y^{2}-6 x-6 y+14=0$ respectively. If P and Q are the points of intersection of these circles, then the area(in sq. units) of the quadrilateral $P C_{1} Q C_{2}$ is:

A 8

B 6

C $\quad 9$
D 4
Solution
$C_{1}=\left(\frac{2}{2}, \frac{2}{2}\right)=(1,1)$
$C_{2}=\left(\frac{6}{2}, \frac{6}{2}\right)=(3,3)$

Radius $r_{1}=\sqrt{1^{2+1} 1^{2}+2}=2$

Similarly radius $r_{2}=2$

Here the quadrilateral is rhombus as all sides are equal

As we can see that $P C_{1}, P C_{2}, Q C_{1}, Q C_{2}$ are radii of two circles

Here $P C_{1}=r_{1}=2$

And diagonals bisect at $O=\left(\frac{1+3}{2}, \frac{1+3}{2}\right)=(2,2)$
$\Rightarrow P C_{1}^{2}=P O^{2}+O C_{1}^{2} \quad$ (as diagonals are perpendicular in rhombus)
$\Rightarrow P O^{2}=2^{2}-\sqrt{2}{ }^{2}$
$\Rightarrow P O=\sqrt{2}$
$\Rightarrow P Q=d_{1}=2 \sqrt{2}, C_{1} C_{2}=d_{2}=2 \sqrt{2}$
\Rightarrow Area of rhombus $=\frac{1}{2} d_{1} d_{2}$
\Rightarrow Area of rhombus $=\frac{1}{2} \times 2 \sqrt{2} \times 2 \sqrt{2}$
\Rightarrow Area of rhombus $=4$

\#1331016

In a random experiment, a fair die is rolled until two fours are obtained in succession. The probability that the experiment will end in the fifth throw of the die is equal to :

A $\frac{150}{6^{5}}$
B $\quad \frac{175}{6^{5}}$
C $\frac{200}{6^{5}}$
D $\frac{225}{6^{5}}$
Solution
$\frac{1}{6^{2}}\left|\frac{5^{3}}{6^{3}}+\frac{2 C_{1} \cdot 5^{2}}{6^{3}}\right|=\frac{175}{6^{5}}$
Ans-Option B

A $\quad-5$
B $-\frac{35}{3}$
C $\quad \frac{35}{3}$
D 5

Solution

Slope of given line is $\frac{2}{3}$
Lines are perpendicular so
$\frac{17-\beta}{-8} \times \frac{2}{3}=-1$
$\beta=5$
\#1331075
Let f and g be continuous functions on $[0, a]$ such that $f(x)=f(a-x)$ and $g(x)+g(a-x)=4$, then $\int_{0}^{a} f(x) g(x) d x$ is equal to :-

A $4 \int_{0}^{a} f(x) d x$
B $2 \int_{0}^{a} f(x) d x$
C $\quad-3 \int_{0}^{2} f(x) d x$
D $\int_{0}^{a} f(x) d x$
Solution
$I=\int_{0}^{a} f(x) g(x) d x$
$I=\int_{0}^{a} f(a-x) g(a-x) d x$
$I=\int_{0}^{a} f(x)(4-g(x) d x$
$I=4 \int_{0}^{a} f(x) d x-1$
$\Rightarrow I=2 \int_{0}^{a} f(x) d x$

\#1331114

The maximum area (in sq. units) of a rectangle having its base on the x-axis and its other two vertices on the parabola, $y=12-x^{2}$ such that the rectangle lies inside the parabola, is :-

A $20 \sqrt{2}$

B $18 \sqrt{3}$
C 32

D $\quad 36$
Solution
$f(a)=2 a\left(12-a^{2}\right)$
$\dot{f}^{\prime}(a)=2\left(12-3 a^{2}\right)$
maximum at $a=2$
maximum area $=f(2)=32$

\#1331137

The Boolean expression $((p \wedge q) \vee(p \vee \sim q)) \wedge(\sim p \wedge \sim q)$ is equivalent to:

A $p \wedge(\sim q)$
B $\quad p \vee(\sim q)$
C $\quad(\sim p) \wedge(\sim q)$
D $p \wedge q$
Solution
By Using Truth Tables for the mentioned Boolean expression we prove that the truth table for $(\sim p) \wedge(\sim q)$ mathces.
Hence the correct answer is Option C

\#1331188

$\lim _{x \rightarrow \pi / 4} \frac{\cot ^{3} x-\tan x}{\cos (x+\pi / 4)}$ is

A 4
B $8 \sqrt{2}$
C 8
D $4 \sqrt{2}$
Solution
$\lim _{x \rightarrow \pi / 4} \frac{\cot ^{3} x-\tan x}{\cos \left(x+\frac{\pi}{4}\right)}$
$\lim _{x \rightarrow \pi / 4} \frac{\left(1-\tan ^{4} x\right)}{\cos (x+\pi / 4)}$
$2 \lim _{x \rightarrow \pi / 4} \frac{\left(1-\tan ^{2} x\right)}{\cos (x+\pi / 4)}$
$R \lim _{x \rightarrow \pi / 4} \frac{\cos ^{2} x-\sin ^{2} x}{\frac{\cos x-\sin x}{\sqrt{2}}} \frac{1}{\cos ^{2} x}$
$4 \sqrt{2} \lim _{x \rightarrow \pi / 4}(\cos x+\sin x)=8$

\#1331228

Considering only the principal values of inverse functions, the set
$A=\left\{x \geq 0: \tan ^{-1}(2 x)+\tan ^{-1}(3 x)=\frac{\pi}{4}\right\}$

A is an empty set
B Contains more than two elements

C Contains two elements
D is a singleton

Solution

$\tan ^{-1}(2 x)+\tan ^{-1}(3 x)=\pi / 4$
$\Rightarrow \frac{5 x}{1-6 x^{2}}=1$
$\Rightarrow 6 x^{2}+5 x-1=0$
$x=-1$ or $x=\frac{1}{6}$
$x=\frac{1}{6} \quad \because x>0$

\#1331264

An ordered pair (α, β) for which the system of linear equations
$(1+\alpha) x+\beta y+z=2$
$\alpha x+(1+\beta) y+z=3$
$\alpha x+\beta y+2 z=2$ has a unique solution is

A $(1,-3)$
B $\quad(-3,1)$
C $(2,4)$

D $\quad(-4,2)$
Solution

For unique solution
$\Delta \neq 0 \Rightarrow\left|\begin{array}{ccc}1+\alpha & \beta & 1 \\ \alpha & 1+\beta & 1 \\ \alpha & 2\end{array}\right| \neq 0$
$\begin{array}{lll}1 & -1 & 0\end{array}$
$\left|\begin{array}{ccc}0 & 1 & -1 \\ \alpha & \beta & 2\end{array}\right| \neq 0 \Rightarrow \alpha+\beta \neq-2$

\#1331308

The area (in sq. units) of the region bounded by the parabola, $y=x^{2}+2$ and the lines, $y=x+1, x=0$ and $x=3$, is :

A $\frac{15}{4}$
B $\quad \frac{15}{2}$
C $\quad \frac{21}{2}$
D $\frac{17}{4}$
Solution
Req. area $=\int_{0}^{3}\left(x^{2}+2\right) d x-\frac{1}{2} \cdot 5.3=9+6-\frac{15}{2}=\frac{15}{2}$

\#1331342
If λ be the ratio of the roots of the quadratic equation in $x, 3 m^{2} x^{2}+m(m-4) x+2=0$, then the least value of m for which $\lambda+\frac{1}{\lambda}=1$, is :
A $2-\sqrt{3}$
B $\quad 4-3 \sqrt{2}$
C $-2+\sqrt{2}$
D $\quad 4-2 \sqrt{3}$
Solution
$3 m^{2} x^{2}+m(m-4) x+2=0$
$\lambda+\frac{1}{\lambda}=1, \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=1, \alpha^{2}+\beta^{2}=\alpha \beta$
$(\alpha+\beta)^{2}=3 \alpha \beta$
$\left(-\frac{m(m-4)}{3 m^{2}}\right)^{2}=\frac{3(2)}{3 m^{2}}, \frac{(m-4)^{2}}{9 m^{2}}=\frac{6}{3 m^{2}}$
$(m-4)^{2}=18, m=4 \pm \sqrt{18}, 4 \pm 3 \sqrt{2}$

\#1331373

If the vertices of a hyperbola be at $(-2,0)$ and $(2,0)$ and one of its foci be at $(-3,0)$, then which one of the following points does not lie on this hyperbola ?

A $(4, \sqrt{15})$
B $\quad(-6,2 \sqrt{10})$
C $(6,5 \sqrt{2})$
D $(2,5 \sqrt{2})$
Solution
$a e=3, e=\frac{3}{2}, b^{2}=4\left(\frac{9}{4}-1\right), b^{2}=5$
$\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$

\#1331398

If $\frac{z-\alpha}{z+\alpha}(\alpha \in R)$ is a purely imaginary number and $|z|=2$, then a value of α is:

A 1
B 2
C $\sqrt{2}$
D $\frac{1}{2}$
Solution
$\frac{z-\alpha}{z+\alpha}+\frac{z^{-\alpha}}{z^{+\alpha}}=0$
$z_{z}+z \alpha-\alpha_{z}^{-}-\alpha^{2}+z_{z}-z \alpha+{ }_{z} \alpha-\alpha^{2}=0$
$|z|^{2}=\alpha^{2}, \quad \alpha= \pm 2$

\#1331447

Let $P(4,-4)$ and $Q(9,6)$ be two points on the parabola, $y^{2}=4 x$ and let x be any point on the arc $P O Q$ of this parabola, where O is the vertex of this parabola, such that the area of $\triangle P X Q$ is maximum. Then this maximum area (in sq.units) is :

A $\frac{125}{4}$
B $\frac{125}{2}$
C $\frac{625}{4}$
D $\frac{75}{2}$

Solution

$y^{2}=4 x$
$2 y y^{\prime}=4$
$y^{\prime}=\frac{1}{t}=2, t=\frac{1}{2}$

Area $=\frac{1}{2}\left|\begin{array}{ccc}\frac{1}{4} & 1 & 1 \\ 9 & 6 & 1 \\ 4 & -4 & 1\end{array}\right|=\frac{125}{4}$

\#1331478

The perpendicular distance from the origin to the plane containing the two lines,
$\frac{x+2}{3}=\frac{y-2}{5}=\frac{z+5}{7}$ and $\frac{x-1}{1}=\frac{y-4}{4}=\frac{z+4}{7}$ is :
$\begin{array}{ll}\mathrm{A} & \frac{11}{\sqrt{6}}\end{array}$
B $\quad 6 \sqrt{11}$

C $\quad 11$
D $\quad 11 \sqrt{6}$

Solution

$\begin{array}{ccc}i & j & k \\ \left|\begin{array}{lll}3 & 5 & 7 \\ 1 & 4 & 7\end{array}\right|\end{array}$
$\hat{i}(35-28)-\hat{j}(21.7)+\hat{k}(12-5)$
$7 \hat{i}-14 \hat{j}+7 \hat{k}$
$\hat{i}-2 \hat{j}+\hat{k}$
$1(x+2)-2(y-2)+1(z+15)=0$
$x-2 y+z+11=0$
$\frac{11}{\sqrt{4+1+1}}=\frac{11}{\sqrt{6}}$

\#1331502

The maximum value of $3 \cos \theta+5 \sin \left(\theta-\frac{\pi}{6}\right)$ for any real value of θ is :
$\begin{array}{ll}\mathrm{A} & \sqrt{19}\end{array}$
B $\frac{\sqrt{79}}{2}$
C $\sqrt{31}$
D $\sqrt{34}$

Solution
$y=3 \cos \theta+5\left(\sin \theta \frac{\sqrt{3}}{2}-\cos \theta \frac{1}{2}\right)$
$\frac{5 \sqrt{3}}{2} \sin \theta+\frac{1}{2} \cos \theta$
$y_{\text {max }}=\sqrt{\frac{75}{4}+\frac{1}{4}}=\sqrt{19}$

\#1331535

A tetrahedron has vertices $P(1,2,1), Q(2,1,3), R(-1,1,2)$ and $O(0,0,0)$. The angle between the faces $O P Q$ and $P Q R$ is :

A $\cos ^{-1}\left(\frac{9}{35}\right)$
B $\cos ^{-1}\left(\frac{19}{35}\right)$

C $\cos ^{-1}\left(\frac{17}{31}\right)$

D

$$
\cos ^{-1}\left(\frac{7}{31}\right)
$$

Solution
$\overrightarrow{O P} \times \overrightarrow{O Q}=(\hat{i}+2 \hat{j}+\hat{k}) \times(2 \hat{i}+\hat{j}+3 \hat{k})$
$5 \hat{i}-\hat{j}-3 \hat{k}$
$\overrightarrow{P Q} \times \overrightarrow{P R}=(\hat{i}-\hat{j}+2 \hat{k}) \times(-2 \hat{i}-\hat{j}+\hat{k})$
$\hat{i}-5 \hat{j}-3 \hat{k}$
$\cos \theta=\frac{5+5+9}{(\sqrt{25+9+1})^{2}}=\frac{19}{35}$

\#1331584

Let $y=y(x)$ be the solution of the differential equation, $x \frac{d y}{d x}+y=x \log _{e} x,(x>1)$. If $2 y(2)=\log _{e} 4-1$, then $y(e)$ is equal to :-

A $\frac{e^{2}}{4}$

B	e

C $\quad-\frac{\mathrm{e}}{2}$
D $-\frac{e^{2}}{2}$
Solution
$\frac{d y}{d x}=\frac{y}{x}=\ln x$
$e^{\int \frac{1}{x} d x}=x$
$x y=\int x \ln x+C$
$P_{n} \times \frac{x^{2}}{2}-\int \frac{1}{x} \cdot \frac{x^{2}}{2}$
$x y=\frac{x}{2} \operatorname{Pn} x-\frac{x^{2}}{4}+C$, for $2 y(2)=2 \operatorname{Pn} 2-1$
$\Rightarrow C=0$
$y=\frac{x}{2} \ln x-\frac{x}{4}$
$y(e)=\frac{e}{4}$

\#1331632

Let $P=\left[\begin{array}{ccc}1 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 3 & 1\end{array}\right]$ and $Q=\left[q_{i j}\right]$ be two 3×3 matrices such that $Q-P^{5}=I_{3}$. Then $\frac{q_{21}+q_{31}}{q_{32}}$ is equal to:

A 15

B 9
C 135
D 10
Solution
100
$P=\left[\begin{array}{lll}3 & 1 & 0 \\ 9 & 3 & 1\end{array}\right]$
$P^{2}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 3+3 & 1 & 0 \\ 9+9+9 & 3+3 & 1\end{array}\right]$
$P^{n}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 3 n & 1 & 9 \\ \frac{n(n+1)}{2} 3^{2} & 3 n & 1\end{array}\right.$
$P^{5}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 5.3 & 1 & 0 \\ 15.9 & 5.3 & 1\end{array}\right]$
$Q=P^{5}+I_{3}$
$Q=\left[\begin{array}{ccc}2 & 0 & 0 \\ 15 & 2 & 0 \\ 135 & 15 & 2\end{array}\right]$
$\frac{q_{21}+q_{31}}{q_{32}}=\frac{15+135}{15}=10$
\#1331677
Consider three boxes, each containing 10 balls labelled $1,2, \ldots, 10$. Suppose one ball is randomly drawn from each of the boxes.Denote by n_{j}, the label of the ball drawn from the $i^{\text {th }}$ box, $(i=1,2,3)$. Then, the number of ways in which the balls can be chosen such that $n_{1}<n_{2}<n_{3}$ is:

A 82

B 240

C 164
D 120
Solution
No. of ways $=10 C_{3}=120$

