Date: 8th April 2019 - Morning Session (Shift 1)

Subject: Physics

#1611026

Topic: Capacitance

A capacitor of capacitance C=15pF is charged with voltage V=500V. The electric field inside the capacitor with dielectric is $10^6V/m$ and the area of the plate is $10^{-4}m^2$ then the dielectric constant of the medium is :($\varepsilon 0=8.85\times 10^{-12}$ in S.I.units)

- A 12.47
- В 8.47
- C 10.85
- D 14.85

Solution

$$E = rac{V}{d} = rac{VC}{AKarepsilon_0}$$
 $K = rac{VC}{Aarepsilon_0 E} = rac{500 imes 15 imes 10^{-12}}{10^{-4} imes 10^6 imes 8.85 imes 10^{-12}} = 8.47$

#1611028

Topic: Electric Field

The electric field of EM wave is 6volt/m. The magnetic field associated with the wave if the wave is propagating in +x direction and electric field along y-axis is ?

- A $10^{-8}T\hat{k}$
- $lacksquare B = 2 imes 10^{-8} T \hat{k}$
- C $3 \times 10^{-8} T \hat{k}$
- D $4 imes 10^{-8} T \hat{k}$

Solution

$$E = BC$$

$$B = \frac{E}{C} = \frac{6}{3 \times 10^8} = 2 \times 10^{-8} T \hat{k}$$

#1611030

Topic: Atomic Spectra and Spectral Series

An electron of H-atom de-excites from energy level $n_1=2$ to $n_2=1$ and the emitted photon is incident on He^+ ions in ground and first excited state. Which of following transition is possible.

- $\mathbf{A} \qquad n=1 \text{ to } n=4$
- B n=2 to n=4
- C n=2 to n=3
- D n=1 to n=3

#1611033

Topic: Purely inductive circuit

The switch is closed at t=0. The time after which the rate of dissipation of energy in the resistor is equal to rate at which energy is being stored in the inductor is :

- A ℓn2
- B $\frac{1}{2} \ln 2$

Date: 8th April 2019 – Morning Session (Shift 1)

Subject: Physics

C $\frac{1}{4} \ell n 2$

D $2\ell n2$

Solution

$$\begin{split} i &= \frac{E}{R} (1 - e^{-\frac{Rt}{L}}) \\ \frac{di}{dt} &= \frac{E}{L} e^{-\frac{t}{\tau}} \text{ where } \tau = \frac{L}{R} \\ i^2 R &= i (L \frac{di}{dt}) \\ \frac{E}{R} R (1 - e^{-\frac{t}{\tau}}) &= L \frac{E}{L} e^{-\frac{t}{\tau}} \\ 1 &= 2 e^{-\frac{t}{\tau}} \end{split}$$

$$\ell n2 = \frac{t}{\tau}$$

$$t=\tau \ell n2=\ell n2$$

#1611035

Topic: Radiation

Two identical containers of same emissivity containing liquids A & B at same temperature of $60^{0}C$ initially and density ρA and ρB respectively. Where $\rho A < \rho B$. Which plot best represents the temperature variation of both with time? Given $(S_A=1000\frac{J}{kg-K},S_B=2000\frac{J}{kg-K})$

#1611038

Topic: Standing Waves

Date: 8th April 2019 - Morning Session (Shift 1)

Subject: Physics

The system of two rods shown in figure is vibrating at the same frequency and forming a standing wave. The ratio of the number of antinodes in the two rods if radius of rod B twice the radius of A is:

A 1

В

C 3

D 4

Solution

 $f_1 = rac{n}{2\ell} \sqrt{rac{T}{
ho A}} \; f_2 = rac{m}{2\ell} \sqrt{rac{T}{
ho 4 A}}$

Given $f_1 = f$

$$rac{f_1}{f_2} = rac{n}{m} imes 2 \ rac{n}{m} = 2$$

#1611180

Topic: Modulation

The wavelength of carrier wave in optical cable fiber is:

A 900nm

B 2700nm

C 1500nm

D 2000nm

#1611197

Topic: Centre of mass

At a given instant, four particle having masses and acceleration as shown in the figure lie at vertices of a square. Acceleration of the center of mass of the system is:

A $\frac{1}{5}(\hat{i}+\hat{j})$

B $\frac{1}{5}(\hat{j}-\hat{i})$

C $\frac{1}{5}(\hat{i}-\hat{j})$

D $-\frac{1}{5}(\hat{i}+\hat{j})$

$$\begin{array}{l} \therefore \, \vec{a}_{cm} = \frac{m_1 \vec{a}_1 + m_2 \vec{a}_2 + \dots }{m_1 + m_2 + \dots } \\ = m \times (-a\hat{i}) + 2m(aj) + 3m(a\hat{i}) + 4m + (-a\hat{j})m + 2m + 3m + 4m \\ = \frac{2\hat{i} - 2\hat{j}}{10} = \frac{1}{5}(\hat{i} - \hat{j}) \end{array}$$

Date: 8th April 2019 - Morning Session (Shift 1)

Subject: Physics

#1611201

Topic: Interference

In YDSE ratio of amplitude of waves is 1:3 . The ratio of $I_{max}:I_{min}$ is:

A 1:4

B 4:1

C 1:1

D 1:9

Solution

$$\begin{split} \frac{I_{max}}{I_{min}} &= \frac{[\sqrt{I_1} + \sqrt{I_2}]^2}{(\sqrt{I_1} - \sqrt{I_2}^2} = (\frac{A_1 + 3A}{A_1 - 3A_1})^2 \\ &= (\frac{4}{2})^2 = \frac{4}{1} \end{split}$$

#1611205

Topic: Dual Nature

Two particle are moving perpendicular to each other with de-Broglie wave length λ_1 and λ_2 . If they collide and stick together, then the de-Broglie wave length of system after collision is:

$$\lambda = \frac{\lambda_1 \lambda_2}{\sqrt{\lambda_1^2 + \lambda_2^2}}$$

$$B \qquad \lambda = \frac{\lambda_1}{\sqrt{\lambda_1^2 + \lambda_2^2}}$$

C
$$\lambda = \frac{\sqrt{\lambda_1^2 + \lambda_2^2}}{\lambda_2}$$

$$\mathsf{D} \qquad \lambda = \frac{\lambda_1 \lambda_2}{\sqrt{\lambda_1 + \lambda_2}}$$

#1611211

Topic: Relative Motion

Ship A is moving with velocity $\vec{V}_1=30\hat{i}+50\hat{j}$ from position (0,0) and ship B is moving with velocity $\vec{V}_2=-10\hat{i}$ from position (80,150). The time for minimum separation between the two ships is:

B 2.2

C 2.4

D None

Solution

$$\vec{V}_r = 40\hat{i} + 50\hat{j}$$

$$ec{r}_r = -80\hat{i} - 150\hat{j}$$

$$t_{min} = rac{\left|\overrightarrow{V_r},\overrightarrow{v_r}
ight|}{\left|\overrightarrow{V}
ight|^2}rac{10700}{4100} = rac{107}{41} = 2.6sec$$

#1611215

Topic: Elastic and Plastic Substances

Date: 8th April 2019 - Morning Session (Shift 1)

Subject: Physics

 10^{22} particle each of mass $10^{-26} Kg$ are striking perpendicularly on a wall of area $1m^2$ with speed $10^4 m/s$ in 1sec. The pressure on the wall if collisions are perfectly elastic in

$$lacksquare$$
 A $2N/m^2$

B
$$4N/m^2$$

C
$$6N/m^2$$

D
$$8N/m^2$$

Solution

$$v=10^4m/s$$

$$m=10^{-26}$$

$$n = 10^{22}$$

$$A=1m^2$$

$$\Delta p = 2mnv$$

$$\Delta p = 2 imes 10^{22} imes 10^{-26} imes 10^4 = 2$$

$$P=rac{F}{A}=2N/m^2$$

#1611217

Topic: Resistance and Resistivity

A carbon resistance with color band is 200Ω . If red band is replaced by green band then the new resistance is:

Α 500Ω

B 300Ω

C 400Ω

D 100Ω

#1611221

Topic: Identification of Units

Dimension of $\sqrt{\frac{\epsilon_0}{\mu_0}}$ are

A $[ML^2T^{-3}A^{-2}]$

B $[M^{-1}L^{-2}T^3A^2]$

 $\mathsf{C} = [M^2 L^2 T^{-3} A^{-2}]$

D $[M^{-1}L^2T^3A^2]$

Solution

$$\begin{split} \sqrt{\frac{\varepsilon_0}{\mu_0}} &= \sqrt{\frac{\varepsilon_0^2}{\mu_0 \varepsilon_0}} = \varepsilon_0 c = [M^{-1}L^{-3}T^4A^2][LT^{-1}] \\ [M^{-1}L^{-2}T^3A^2] \end{split}$$

#1611238

Topic: Young's Modulus

An elastic string of length 42sm and cross-sectional area $10^{-4}m^2$ is attached between two pegs ar distance of 6mm as shown in the figure. A particle of mass m is kept at midpoint of string and stretched as shown in figure by 20cm and release. As the string its natural length, the particle attains a speed of 20m/s. Then young modulus Y of string is of order

A 108

Date: 8th April 2019 - Morning Session (Shift 1)

Subject: Physics

B
$$10^{12}$$

D
$$10^4$$

Solution

$$\frac{1}{2} \times Y \times (\frac{\Delta l}{L})^2 = \frac{1}{2} m v^2 Y \times \frac{(0.2)^2}{0.42} \times 10^4 = 0.05 \times 400 = \frac{1}{2} m v^2 Y = \frac{0.05 \times 400 \times 0.42}{(0.2)^2 \times 10^4} = 2.1 \times 10^6 N/m^2$$

#1611254

Topic: Resistance and Resistivity

The potential difference between the points A and B for the electric circuit shown in figure. is:

B $\frac{20}{3}$

C $\frac{5}{3}$

D $\frac{7}{9}$

Solution

 $\text{Applying parallel combination of the batteries } E_{equ} = \frac{\frac{E_1}{r_2} + \frac{E_2}{r_2} + - - -}{\frac{1}{r_1} + \frac{1}{r_2} + - - -} = \frac{\frac{2}{2} + \frac{4}{2} + \frac{4}{2}}{\frac{1}{2} + \frac{1}{2} + \frac{1}{2}} \Rightarrow E_{equ} = \frac{10}{2 - \frac{3}{2}} = \frac{10}{3} V$

#1611265

Topic: Zener Diode

Determine the current through zener diode for the circuit shown in figure is: (Given: zener diode break down voltage $V_z=5.6V$)

A 7mA

B 17mA

C 10mA

D 15mA

Date: 8th April 2019 - Morning Session (Shift 1)

Subject: Physics

For zener brak down potential difference across $800\Omega\,$ resistor will be $5.6V4\,$

$$V_z=5.6V$$

$$i_2 = \frac{V_z}{800} = \frac{5.6}{800} = 7mA$$

$$\Delta V$$
 across $200\Omega=9-5.6=3.4V$

$$i_1 = \frac{3.4}{200} = 17mA$$

$$i_1 = 1_2 + i_z$$

$$i_z = 17mA - 7mA = 10mA$$

#1611293

Topic: Moment of Inertia of Common Bodies

The density of a circular disc is given as $\sigma = \rho o X$ where 'x' is the distance from the centre. Its moment of inertia about an axis perpendicular to its plane and passing through i edge is:

$$\frac{15}{16}\rho o^{\pi R^5}$$

$$\boxed{\mathbf{B}} \quad \frac{16}{15} \rho o^{\pi}$$

$$C = \frac{6}{5} \rho o^{\pi B}$$

D
$$\frac{5}{2}\rho o^{\pi R^5}$$

Solution

$$dt = dmx^2 + dmR^2 \\$$

Now,
$$dm = \sigma 2\pi x\, dx$$

$$dm = \rho ox 2\pi x dx$$

$$= \rho o 2\pi x^2 dx$$

$$\int dI = \int_{0}^{R} \rho o 2 \pi x^{4} dx + \int_{0}^{R} \rho o 2\pi R^{2} x^{2} dx$$

$$I = \frac{\rho o 2\pi R^5}{5} + \frac{\rho o 2\pi R^5}{3}$$

$$\frac{1 = \frac{5}{5}}{\frac{8\rho o 2\pi R^5}{15}} = \frac{16\rho o \pi R^5}{15}$$

#1611324

Topic: Electric Charge

Date: 8th April 2019 – Morning Session (Shift 1)

Subject: Physics

A conducting sphere is enclosed by a hollow conducting shell. Initially the inner sphere has a charge Q while the outer one is uncharged . The potential difference between the two spherical surface is found to be V. Later on the outer shell is given a charge -4Q. The new potential difference between the two surface is:

A

-2VC

2VD

Solution

$$V_A = \frac{KQ}{a} + \frac{K(-Q+Q)}{K(-Q+Q)}$$

$$V_B = \frac{\Delta V_A}{b} + \frac{V_B}{b}$$

$$\Delta V_i = V_A - V_B = KQ\left(\frac{1}{a} - \frac{1}{b}\right) = V$$

$$V_A = \frac{KQ}{r} - \frac{K4Q}{r}$$

$$V_A = \frac{a}{KQ} - \frac{b}{K4Q}$$
 $V_B = \frac{K4Q}{L} - \frac{K4Q}{L}$

$$\begin{aligned} V_A &= \frac{a}{a} - \frac{b}{b} \\ V_B &= \frac{KQ}{b} - \frac{K4Q}{b} \\ \Delta V_i &= V_A - V_B - KQ\left(\frac{1}{a} - \frac{1}{b}\right) = V \end{aligned}$$

#1611334

Topic: Electric Field

A small sphere of mass m=2gm having charge $Q=5\mu C$ is suspended using an insulated string as shown in figure. The angle heta made by the sphere with vertical if it is placed in an electric field of magnitude 2000 v/m towards right is:

 $tan^{-1}(5)$

В $tan^{-1}(0.5)$

 $tan^{-1}(2)$

 $tan^{-1}(0.2)$ D

Date: 8th April 2019 – Morning Session (Shift 1)

Subject: Physics

$$\tan\theta = \frac{QE}{mg} = \frac{5 \times 10^{-6} \times 2000}{2 \times 10^{-3} \times 10} = \frac{1}{2}$$

#1611344

Topic: Magnetic field

A circular loop of radius r having N number of turns carrying current l is placed in a uniform magnetic field \vec{B} parallel to the plane of the loop. The torque on the loop is:

A $NI\pi r^2 B$

B $N^2I\pi r^2B$

C $NI^2\pi r^2B$

D $NI\pi r^2B^2$

Solution

 $|\vec{M}| = NI\pi r^2 \vec{\tau} = \vec{M} \times \vec{B} |\vec{\tau}| = MB \sin\theta = NI\pi r^2 \sin 90^o \times B |\vec{\tau}| = NI\pi r^2 B$

#1611345

Topic: Basics of AC

An A.C source of voltage $V=220sin(100\pi t)$ volts is connected with resistance $R=50\Omega$. The time interval in which the current goes from its peak value to half of the peak value is:

A $\frac{1}{400}$ sec

B $\frac{1}{50}sec$

 $\begin{bmatrix} \mathsf{c} \end{bmatrix} = \frac{1}{300} se$

D $\frac{1}{200}$ sec

Solution

$$\begin{split} I &= \frac{200}{50} \sin(100\pi l) \\ T &= \frac{2\pi}{100\pi} = \frac{1}{50} \sec \\ \Delta T &= \frac{T}{6} = \frac{1}{50 \times 6} = \frac{1}{300} \sec \end{split}$$

#1611346

Topic: Graphs in Kinematics

Date: 8th April 2019 - Morning Session (Shift 1)

Subject: Physics

Force versus displacement graph of a particle starting from rest is given in the figure shown. The kinetic energy of particle at x=3m is:

A 6.5J

B 7.5J

C = 6J

D 5.J

Solution

 $W=k_f-K_f$

 $W=2 imes 2+rac{1}{2} imes (2+3) imes 1=kr$

= 4 + 2.5 = 6.5J

#1611347

Topic: Gravitational Potential

Four particle each of mass m are undergoing circular motion under the influence of action of their mutual gravitational interaction while being at the vertices of a square of side a. Their speeds are

A $\sqrt{\frac{2Gm}{a}}$

 $\boxed{\mathbf{B}}$ $1.16\sqrt{\frac{Gm}{a}}$

c $1.5\sqrt{\frac{Gm}{g}}$

D $\sqrt{\frac{Gm}{a}}$

Date: 8th April 2019 – Morning Session (Shift 1)

Subject: Physics

$$\begin{split} r &= \frac{a\sqrt{2}}{2} = \frac{a}{\sqrt{2}} \\ &\frac{Gmm}{a^2} \frac{1}{\sqrt{2}} + \frac{Gmm}{(a\sqrt{2}} + \frac{Gmm}{a^2} \frac{1}{\sqrt{2}} = \frac{mv^2}{a} \sqrt{2} \\ &\frac{Gm^2}{a^2} \left(\frac{1}{\sqrt{2}} + \frac{1}{1} + \frac{1}{\sqrt{2}} \right) = \frac{mv^2}{a} \sqrt{2} \\ &\frac{Gm}{a} \left(\frac{1}{2} + \sqrt{2} \right) = \sqrt{2}. \ v^2 \\ &\sqrt{\frac{Gm}{a}} \frac{(1 + 1\sqrt{2})}{2\sqrt{2}} = v \\ &v = 1.16 \sqrt{\frac{Gm}{a}} \end{split}$$

#1611351

Topic: Reflection at Plane Surface

Find out no. of reflection after which light ray will exit from (Given $\sin 40^0=0.64$)

A 130000

В 57735

C 140000

D 150000

Solution

1 sin $40^0=1.31sinr$

0.64=1.31 sinr

$$sinr = rac{0.64}{1.31} = 0.49 pprox 0.5$$

r = 30

So $\theta = C$

 $\therefore \theta > C$

T.I.R. at other surface

$$tanr = \frac{20\mu m}{x}$$

$$x=20\sqrt{3}$$

$$n=\frac{2m}{20\sqrt{3}\mu m}\\10^5$$

$$n = \frac{10^{\circ}}{\sqrt{3}}$$

n = 57735

#1611353

Topic: Stress and Strain

Date: 8th April 2019 – Morning Session (Shift 1)

Subject: Physics

A block of mass 4kg is suspended from the ceiling with the help of a steel wire of radius 2mm and negligible mass. Find the stress in the wire $(g=\pi^2)$

A $4.0 \times 10^6 N/m^2$

B $3.14 \times 10^6 N/m^3$

C $3 \times 10^5 N/m^3$

D $2.0 \times 10^6 N/m^2$

Solution

$$\begin{split} &\text{Stress=} \frac{F}{A} = \frac{mg}{A} = \frac{4 \times \pi^2}{\pi r^2} = \frac{4\pi}{r^2} = \frac{4 \times 3.1}{4 \times 10^{-6}} \\ &= 3.14 \times 10^6 N/m^2 \end{split}$$

#1611354

Topic: Thin Lenses

A converging lens of focal length 20cm is placed between an object & a concave mirror of focal length 10cm as shown in figure. The final image is:

A Coinciding with object enlarged, inverted, real

B Coinciding with object same size, erect, real

C Coinciding with object same size , inverted, virtual

D Coinciding with object same size, inverted ,real

Solution

Image is same size, inverted, real and coinciding with object.

#1611360

Topic: Faraday's and Lenz's Law

Date: 8th April 2019 - Morning Session (Shift 1)

Subject: Physics

A conducting slider of resistance $R(10\Omega)$, mass 50g & length 10cm is kept on a U-shaped frame as shown in figure. There is uniform magnetic field (B=0.1T) perpendicul to plane of frame. The slider is attached to a spring (K=0.5N/m). The slider is displaced by an amount A_0 & released. Time in which its amplitude become A_0/e is

A 9000s

B 10000s

C 12000s

D 15000s

Solution

$$-kx - \frac{i}{B} = m\frac{d^2x}{dt^2}$$

$$-kx - \frac{B^2l^2}{R}\frac{dx}{dt} - m\frac{d^2x}{dt^2} = 0$$

Comparing with

$$-Kx - b\frac{dx}{dt} - m\frac{d^2x}{dt^2} = 0$$

$$-Kx - b\frac{1}{dt} - m\frac{1}{dt^2}$$

$$\frac{B^2l^2}{R.2m}t = 1$$

$$t = \frac{2mR}{B^2l^2} = 10,000s$$

#1611377

Topic: Viscosity

A liquid of coefficient of viscosity $\eta=1$ poise is flowing in a pipe of radius 3cm such that the rate of volume flow is $1000\ell/min$. Determine the Reynolds numbers.

A 3563

B 3500

C 3400

D 3600

Solution

Rate of volume flow $=\pi r^2=100l/min$

$$\pi r^2 = \frac{1}{60} m^3 / s$$

Reynolds number =
$$R_e=rac{
ho vD}{
u}=rac{1000}{0.1} imesrac{1}{60\pi r^2} imes 2r$$

 $rac{2660}{1.0 imes 60 \pi imes 3 imes 10^{-2}} = 3563$