\#1611185

Topic: Methods of preparation of amines
Which of the following amine will be prepared by Gabriel phthalimide reaction?

A n-Butylamine
B Triethylamine
C neo-Pentylamine
D tert-Butylamine

Solution

Gabriel phthalimide reaction is used to prepare primary unhindered amine only. because in Gabriel phthalimide reaction no other place for nitrogen, therefor it attack at termin position only and after hydrolysis it give primary amine i.e n-Butylamine.

\#1611186

Topic: Disaccharides and polysaccharides
Reaction of dilute HCl with Maltose gives:

A D-glucose
B D-fructose
C D-glucose and D-fructose
D D-galactose

\#1611189

Topic: Chemical reactions of amines
The correct order of K_{b} value of following is:
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \ddot{\mathrm{~N}} \mathrm{H}, \mathrm{NH}_{3}, \stackrel{\mathrm{~N}}{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}}$

A $\quad 1>2>3$

B $\quad 1>3>2$

C $\quad 3>2>1$

D $\quad 3>1>2$
Solution
$+I$ effect is maximum in secondary amine and minimum in primary amine.
Thus the correct order of K_{b} will be
$\left(C_{2} H_{5}\right)_{2} \ddot{N} H>\ddot{N}\left(C_{2} H_{5}\right)_{3}>N H_{3}$

\#1611191

Topic: Introduction and nomenclature of carboxylic acids

Subject: Chemistry | 8th April | Shift 1

Write IUPAC name of the following compound.

A 3-Hydroxy-2-methylpentanoic acid
B 4-Methyl-3-hydroxypentanoic acid
C 3-hydroxy-4-methylpentanoic acid
D 2-Methyl-2-hydroxypentanoic acid
Solution
3-Hydroxy-4-methylpentanoic acid

\#1611196

Topic: Types of organic reactions

Compound ' X ' will be:

A

B

C

D

[^0]
\#1611199
Topic: Chemical properties of aldehydes and ketones

X will be:

A

B

C

D

Solution

\#1611202
Topic: Diazonium salts

What will be the product of the given reaction?

Subject: Chemistry | 8th April | Shift 1

A

B

c

D

Solution
Diazo coupling will take place from the least hindered (ortho, para) position of most activated phenolic ring.

\#1611204
Topic: Types of organic reactions

Find the product of the given reaction.

A

B

Subject: Chemistry | 8th April | Shift 1

c

D

Solution

\#1611206

Topic: Chemical properties of aldehydes and ketones
Find the compound ' X ' which give following test.
Neutral $\mathrm{FeCl}_{3} \rightarrow-v e$
Fehling solution $\rightarrow-v e$
Iodoform reaction $\rightarrow+v e$
Grignard reagent $\rightarrow+v e$

A

B

C

D

Solution

Subject: Chemistry | 8th April | Shift . 1
Neutral $\mathrm{FeCl}_{3} \rightarrow-v e \Rightarrow$ phenol is absent.
Fehling solution $\rightarrow-v e \Rightarrow-\mathrm{CHO}$ is absent.
lodofoem reaction $\rightarrow+v e \Rightarrow-\mathrm{COCH}_{3}$ or $-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{3}$ is present.
Grignard reagent $\rightarrow+v e \Rightarrow$ Electrophilic centre of acidic H is present.

\#1611208
Topic: Important alcohols and phenols
$\xrightarrow{\substack{\mathrm{H}_{2} \mathrm{O}}} \xrightarrow{\substack{10 \% \mathrm{HCl}}}$ Insoluble

A Toluidine

B Benzamide
C Para-Cresol
D Oleic acid
Solution
Both Para-Cresol and Oleic acid form salt with $10 \% \mathrm{NaOH}$, but Para-Cresol salt is soluble whereas Oleic acid salt is insoluble due to very long unsaturated carbon chain.

\#1611212

Topic: First law of thermodynamics
Which of the following is not correct for an ideal gas as per first low of thermodynamics?

A Adiabatic process $\Delta U=-w$
B Isothermal process $q=-w$
C Cyclic process $q=-w$
D Isochoric process $\Delta U=q$
Solution
From FLOT $\Delta U=q+w$
for adiabatic process $q=0$
$\therefore \Delta U=w$

\#1611213

Topic: Adsorption

$\log P$
In Freundlich isotherm, $\frac{x}{m} \propto P^{a}$. Find the value of a from the following graph.
A $\frac{2}{3}$

B $\quad \frac{1}{3}$
C $\quad \frac{3}{2}$
D 1

Solution

From Freudlich isotherm $\log \frac{x}{m}=\log k+\frac{1}{n} \log p$
slope of curve is $\frac{1}{n}=a=\frac{2}{3}$

\#1611216

Topic: Vapour Pressure of Liquid Solutions and Raoult's Law
In a mixture of A and B, having vapour pressure of pure A and pure B as 400 mm Hg and 600 mm Hg respectively, mole fraction of B in liquid phases is 0.5 . Calculate tota vapour pressure and mole fraction of A and B in vapour phases.

A $500,0.4,0.6$

B $\quad 500,0.5,0.5$

C $\quad 450,0.4,0.6$

D $450,0.5,0.5$
Solution
$P_{T}=X_{A} P_{A^{\circ}}+X_{B} P_{B^{o}}$
$=0.5 \times 400+0.5 \times 600$
$=500 \mathrm{~nm}$ of Hg
$\frac{1}{P_{T}}=\frac{y_{A}}{P_{A}^{o}}+\frac{1-y_{B}}{P_{B}^{o}}$
$y_{A}=0.6 \& y_{B}=1-0.6=0.4$

\#1611219

Topic: Quantum numbers
Arrange the following set of quantum numbers having highest energy of an electron.
(p) $n=4 \quad l=1 \quad m=+1 \quad s=+\frac{1}{2}$
(q) $n=4 \quad l=2 \quad m=-1 \quad s=-\frac{1}{2}$
(r) $n=3 \quad l=2 \quad m=0 \quad s=+\frac{1}{2}$
(s) $n=3 \quad l=1 \quad m=+1 \quad s=-\frac{1}{2}$

A $\quad q>r>p>s$

B $\quad q>p>r>s$

C $\quad s>p>r>q$

D $\quad s>r>p>q$
Solution
We know that n is principle quantum number and l is an azimuthal quantum number.
Also, $l=n-1$
The set of quantum number which have highest value of $n+l$ will have the highest energy and vice versa.

\#1611225

Topic: Calculation of number of particles per unit cell of a cubic crystal system
A forms ccp lattice, B occupies half of the octahedral voids and ' O ' occupy all the tetrahedral voids. Calculate formula.

Subject: Chemistry | 8th April | Shift 1
D $A_{2} B_{3} O$
Solution
Effective number of $A=4 \&$ effective number of $B=4 \times \frac{1}{4}=2 \&$ effective number of $O=8 \&$ formula is $A_{4} B_{2} O_{B}$ or $A_{2} B O_{4}$

\#1611227

Topic: Boron and aluminium
$B_{2} \mathrm{H}_{6}$ reacts with O_{2} and $\mathrm{H}_{2} \mathrm{O}$ respectively to form:

A $\mathrm{B}_{2} \mathrm{O}_{3}, \mathrm{H}_{3} \mathrm{BO}_{3}$
B $\quad \mathrm{B}_{2} \mathrm{O}_{3}, \mathrm{BH}_{4}^{-}$
C $\mathrm{HBO}_{2}, \mathrm{H}_{3} \mathrm{BO}_{3}$
D $\mathrm{H}_{3} \mathrm{BO}_{3}, \mathrm{HBO}_{2}$
Solution
$\mathrm{B}_{2} \mathrm{H}_{6}+3 \mathrm{O}_{2} \rightarrow \mathrm{~B}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{B}_{2} \mathrm{H}_{6}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{BO}_{3}+6 \mathrm{H}_{2}$

\#1611231

Topic: Concentrations
Solution of 100 ml water contains 0.73 g of $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$ and 0.81 g of $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$. Calculate the hardness in terms of ppm of CaCO_{3}.

A $\quad 10^{2} p p m$
B $10^{4} \mathrm{ppm}$
C $5 \times 10^{3} p p m$
D $10^{3} \mathrm{ppm}$
Solution
$p p m$ of $\mathrm{CaCO}_{3}=\frac{\left(\frac{0.73}{146}+\frac{0.81}{162}\right) \times 100}{100} \times 10^{6}=10^{4} p p m$

\#1611234

Topic: Solubility product and common ion effect
For $Z r_{3}\left(\mathrm{PO}_{4}\right)_{4}$ the solubility product is $K_{s p}$ and solubility is S. Find the correct relation.
A $S=\left(\frac{K_{s p}}{6912}\right)^{1 / 7}$
B $\quad S=\left(\frac{K_{s p}}{216}\right)^{1 / 7}$
C $\quad S=\left(\frac{K_{s p}}{216}\right)^{1 / 8}$
D $S=\left(\frac{K_{s p}}{912}\right)^{1 / 3}$
Solution
$Z_{3}\left(\mathrm{PO}_{4}\right)_{4} \rightleftharpoons \underset{3 \mathrm{~s}}{3 Z_{r}{ }^{++}}+\underset{4 \mathrm{~s}}{4 \mathrm{PO}_{3}^{3-}}$
$K_{s p}=(3 s)^{3}(4 s)^{4}$
$=27 \times 256 s^{7}$
$=6912 s^{7}$
$S=\left(\frac{K_{s p}}{6912}\right)^{1 / 7}$

\#1611247

Topic: Crystal field theory

Given complexes are low spin complexes,
$\left[\mathrm{V}(\mathrm{CN})_{6}\right]^{4-}$
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
then order of magnetic moment (μ) for $V^{2+}, \mathrm{Fe}^{2+}, C r^{+3}, R u^{3+}$ is:
A $\quad V^{2+}>\mathrm{Cr}^{2+}>\mathrm{Fe}^{2+}>\mathrm{Ru}^{3+}$
B $\mathrm{Fe}^{2+}>\mathrm{V}^{2+}>\mathrm{Cr}^{+2}>\mathrm{Ru}^{3+}$
C $\mathrm{V}^{2+}>\mathrm{Cr}^{2+}>\mathrm{Ru}^{3+}>\mathrm{Fe}^{2+}$
D $\mathrm{Fe}^{2+}>\mathrm{Cr}^{3+}>\mathrm{V}^{2+}>\mathrm{Ru}^{3+}$

Solution

The magnetic moment is directly proportional to the number of unparied electrons and it is given by formula:
$\mu=\sqrt{n(n+2)}$
Here all ligands are strong field ligands thus pairing of unpaired electron takes place.
Here for $[V(C N)]^{4-}, V$ shows +2 oxidation state,
$\therefore V^{2+}=[A r] 3 d^{3}$ (3 unpaired electrons)
For $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}, \mathrm{Cr}$ shows +2 oxidation state
$\therefore C r^{2+}=[A r] 3 d^{4}$ (2 unpaired electrons)
For $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}, R u^{3+}$ shows +3 oxidation state
$\therefore R u^{3+}=[K r] 4 d^{5}$,(1 unpaired electrons)
Similarly, $\left[F e(C N)_{6}\right]^{4-}$ will have 0 unpaired electrons.

\#1611258

Topic: Electrode potential
Given : $E_{S_{2} O_{8}^{2-} / \mathrm{SO}_{4}^{2-}}^{o}=2.05 \mathrm{~V}$
$E_{B_{r_{2}} / B_{r^{-}}}^{o}=1.40 \mathrm{~V}$
$E_{A u^{3+} / A u}^{o}=1.10 \mathrm{~V}$
$E_{O_{2} / \mathrm{H}_{2} \mathrm{O}}^{o}=1.20 \mathrm{~V}$
Which of the following is the strongest oxidizing agent?

A $\quad \mathrm{S}_{2} \mathrm{O}_{8}^{2-}$
B $\quad B r_{2}$
C $A u^{+3}$
D O_{2}

Solution

Strongest oxidizing agent has highest value of SRP

\#1611269

Topic: Ozone

Assertion

Ozone is getting depleted due to $C F C_{s}$

Reason

With the depletion of ozone layer more UV radiation filters into troposphere

A Both Assertion and Reason are correct and Reason is the correct explanation for Assertion

B Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion

C Assertion is correct but Reason is incorrect

D Assertion is incorrect but Reason is correct

Solution

Subject: Chemistry | 8th April | Shift 1

Ozone layer is depleted due to released of chloroflurocarbons ($C F C s$)
$\mathrm{CF}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{U V} \mathrm{Cl}(\mathrm{g})+\mathrm{F}_{2} \mathrm{Cl}(\mathrm{g})$
$\mathrm{Cl}(g)+\mathrm{O}_{3} \rightarrow \mathrm{ClO}(g)+\mathrm{O}_{2}(g)$
$\mathrm{CiO}(g)+\mathrm{O}(g) \rightarrow \mathrm{C} \dot{l}+\mathrm{O}_{2}$
Due to depletion of ozone layer, more $U V$ radiation filters into troposphere.

\#1611275

Topic: Alkali metals
In which of the following order of hydration energy correct?

A $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
B $\quad \mathrm{Li}^{+}<\mathrm{Na}^{+}<\mathrm{K}^{+}<\mathrm{Rb}^{+}<\mathrm{Cs}^{+}$
C $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Cs}^{+}>\mathrm{Rb}^{+}$
D $\mathrm{Li}^{+}<\mathrm{Na}^{+}<\mathrm{K}^{+}<\mathrm{Cs}^{+}<R b^{+}$

Solution

Hydration decreases with a decrement in charge density of an ion

\#1611279

Topic: Thermodynamic principles of metallurgy
Ellingham diagram is used for:

Reduction

B
Electrolysis
C Zone refining
D Van-Arkel
Solution
With the help of Ellingham diagram we can select proper reducing agent ($C_{(s)}$ or $C O$ or $A l$) for metal compound

\#1611283

Topic: Isotopes, isobars, isotones and isoelectronics
In isoelectronic species $\mathrm{Cl}^{-}, \mathrm{Ar}, \mathrm{Ca}^{2+}$ size differ due to:
nuclear charge
B electronic-electronic repulsion in valence shell

C magnetic quantum number
D principal quantum number

Solution

In isoelectronic species, number of electrons are same but size decrease with increase in atomic number of nuclear charge

\#1611300

Topic: Heat capacity, specific heat capacity and molar heat capacity
3 mole of Ag is heated from 300 K to 1000 K . Calculate ΔH when $P=1 \mathrm{~atm}$ and $C_{p}=23+0.01 T$.

A $62 \mathrm{~kJ} / \mathrm{mol}$
B $\quad 45 \mathrm{~kJ} / \mathrm{mol}$
C $\quad 38 \mathrm{~kJ} / \mathrm{mol}$
D $\quad 54 \mathrm{~kJ} / \mathrm{mol}$

Solution

Subject: Chemistry | 8th April | Shift 1
$\Delta H=\int_{T_{1}}^{T_{2}} n C p d T=n \int_{300}^{1000}(23+0.01 T) d T$
$=3\left[23 T+\frac{0.01 T^{2}}{2}\right]_{300}^{1000}$
$=3\left[\frac{2 \times 23 \times 700+9100}{2}\right]$
$61950 \mathrm{~J} / \mathrm{mol} \simeq 62 \mathrm{~kJ} / \mathrm{mol}$

\#1611307

Topic: Important compounds of transition elements
$\mathrm{FeC}_{2} \mathrm{O}_{4}, \mathrm{Fe}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}, \mathrm{FeSO}_{4}, \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ one mole each, will react with how many moles of acidified $\mathrm{KMnO} \mathrm{O}_{4}$?

A 1
B $\quad 2$
C 3

D 5

Solution

$\mathrm{FeC}_{2} \mathrm{O}_{4}+\mathrm{KMnO}_{4} \rightarrow \mathrm{Fe}^{3+}+\mathrm{CO}_{2}+\mathrm{Mn}^{2+}$
$v . f .=3 v . f=5$
$1 \times 3=$ mole $\times 5$
Mole $=\frac{3}{5}$
$\mathrm{Fe}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}+\mathrm{KMnO}_{4} \rightarrow \mathrm{Fe}^{3+}+\mathrm{CO}_{2}+\mathrm{Mn}^{2+}$
v. $f=6 \quad$ v. $f=5$
$1 \times 6=$ mole $\times 5$
Mole $=\frac{6}{5}$
$\mathrm{FeSO}_{4}+\mathrm{KMnO}_{4} \rightarrow \mathrm{Fe}^{3+}+\mathrm{SO}_{4}^{2-}+\mathrm{Mn}^{2+}$
v. $f=1 \quad$ v. $f=5$
$1 \times 1=$ moles $\times 5$
Mole $=\frac{1}{5}$
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ doesn't oxidise
Total moles of $\mathrm{KMnO}_{4}=\frac{3}{5}+\frac{6}{5}+\frac{1}{5}=2$

\#1611379

Topic: Rate law expression and order of reaction
For $2 A+B \rightarrow C$. find the rate law

$[A]$	$[B]$	Initial Rate
0.05	0.05	0.045
0.10	0.05	0.09
0.20	0.10	0.72

A $\quad R=K[A][B]$
B $\quad R=k[A][B]^{2}$
C $\quad R=k\left[A^{2}\right][B]$
D $\quad R=[A]^{2}[B]^{2}$

Solution

```
Rate \(=K[A]^{x}[B]^{y}\)
\(r_{1}=k[A]_{1^{1}}[B]_{1^{y}}\)
\(r_{2}=k[A]_{2}^{x}[B]_{2}^{y}\)
\(\frac{r_{2}}{r_{a}}=\left(\frac{[A]_{2}}{[A]_{1}}\right)^{x}\)
\(\frac{0.09}{0.045}=\left(\frac{0.1}{0.05}\right)^{x}\)
\(2=2^{x} \quad \therefore x=1\)
\(r_{3}=k[A]_{3}^{x}[B]_{3}^{y}\)
\(\frac{r_{3}}{r_{2}}=\left(\frac{[A]_{3}}{[A]_{2}}\right)^{1}\left(\frac{[B]_{3}}{[B]_{1}}\right)^{y}\)
\(\frac{0.72}{0.09}=\left(\frac{0.2}{0.1}\right)^{1}\left(\frac{0.1}{0.05}\right)^{1}\)
\(8=2^{1} 2^{y}\)
\(2^{y}=4\)
\(\therefore y=2\)
\(\therefore R=k[A][B]^{2}\)
```


\#1611383

Topic: Lanthanoids
Which of the following lanthanoid ions are coloured?
(a) $L u^{+3}$
(b) Pm^{+3}
(c) Sm^{+3}
(d) $E u^{+3}$

A $\quad \mathrm{Lu}^{+3}, \mathrm{Pm}^{+3}, \mathrm{Sm}^{+3}$
B $\quad \mathrm{Pm}^{+3}, \mathrm{Sm}^{+3}, E u^{+3}$
C $\quad L u^{+3}, S m^{+3}, E u^{+3}$
D None of these
Solution

```
\(L u^{+3}\) colourless \(\left(4 f^{14}\right)\)
\(P m^{3+}\), Pink ( \(4 f^{4}\) )
\(S m^{+3}\) yellow \(\left(4 f^{5}\right)\)
\(E u^{+3}\), Pink \(\left(4 f^{6}\right)\)
```


[^0]: Solution

