toppr

#1611185

Topic: Methods of preparation of amines

Which of the following amine will be prepared by Gabriel phthalimide reaction?

Α

n-Butylamine

- B Triethylamine
- C neo-Pentylamine
- D tert-Butylamine

Solution

Gabriel phthalimide reaction is used to prepare primary unhindered amine only. because in Gabriel phthalimide reaction no other place for nitrogen, therefor it attack at terminiposition only and after hydrolysis it give primary amine i.e n-Butylamine.

#1611186

Topic: Disaccharides and polysaccharides

Reaction of dilute HCl with Maltose gives:

D-glucose

- B D-fructose
- C D-glucose and D-fructose
- D D-galactose

#1611189

Topic: Chemical reactions of amines

The correct order of K_b value of following is:

 $(C_2H_5)_2\ddot{N}H, NH_3, \ddot{N}(C_2H_5)_3$

- $\mathbf{A} \qquad 1>2>3$
- **B** 1 > 3 > 2
- C 3 > 2 > 1
- D 3 > 1 > 2

Solution

+I effect is maximum in secondary amine and minimum in primary amine.

Thus the correct order of K_b will be

 $(C_2H_5)_2\ddot{N}H>\ddot{N}(C_2H_5)_3>NH_3$

#1611191

Topic: Introduction and nomenclature of carboxylic acids

Write IUPAC name of the following compound.

- A 3-Hydroxy-2-methylpentanoic acid
- **B** 4-Methyl-3-hydroxypentanoic acid
- C 3-hydroxy-4-methylpentanoic acid
- D 2-Methyl-2-hydroxypentanoic acid

Solution

3-Hydroxy-4-methylpentanoic acid

#1611196

Topic: Types of organic reactions

Compound ${}^{\backprime}X{}^{\backprime}$ will be:

#1611199

Topic: Chemical properties of aldehydes and ketones

 \boldsymbol{X} will be:

Solution

#1611202

Topic: Diazonium salts

What will be the product of the given reaction?

$$^{\rm B} \qquad \stackrel{\rm OH}{\bigodot} N = N - C_6 H_5$$

$$\begin{array}{c|c} D & OH \\ \hline \\ \hline \\ N=N-Ph \end{array}$$

Diazo coupling will take place from the least hindered (ortho, para) position of most activated phenolic ring.

#1611204

Topic: Types of organic reactions

Find the product of the given reaction.

D
$$CH_2-CH_2-Br$$

$$\begin{array}{c} OCH_{3} \\ H \\ EH \\ CH \\ CH \\ CH \\ CH_{2} \end{array}$$

$$\begin{array}{c} OCH_{3} \\ Br \\ \hline \\ CH \\ CH_{3} \end{array}$$

$$\begin{array}{c} OCH_{3} \\ H \\ CH \\ CH_{3} \\ Br \end{array}$$

$$\begin{array}{c} OCH_{3} \\ H \\ CH \\ CH_{3} \\ Br \end{array}$$

$$\begin{array}{c} OCH_{3} \\ H \\ CH \\ CH_{3} \\ Br \end{array}$$

#1611206

Topic: Chemical properties of aldehydes and ketones

Find the compound ${}^{\mbox{\tiny '}} X^{\mbox{\tiny '}}$ which give following test.

Neutral $FeCl_3
ightarrow -ve$

Fehling solution ightarrow -ve

lodoform reaction ightarrow +ve

Grignard reagent ightarrow +ve

c
$$OH$$
 $C - C_2H_5$
 OCH_3

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{OH} \\ \parallel \\ \text{C-C}_2\text{H}_5 \end{array} \end{array}$$

Neutral $FeCl_3
ightarrow -ve \Rightarrow$ phenol is absent.

Fehling solution $ightarrow -ve \Rightarrow -CHO$ is absent.

lodofoem reaction $ightarrow +ve \Rightarrow -COCH_3$ or $-CH(OH)-CH_3$ is present.

Grignard reagent $ightarrow +ve \Rightarrow$ Electrophilic centre of acidic H is present.

#1611208

Topic: Important alcohols and phenols

Identify the compound 'X'.

- A Toluidine
- **B** Benzamide

D Oleic acid

Solution

Both Para-Cresol and Oleic acid form salt with 10% NaOH, but Para-Cresol salt is soluble whereas Oleic acid salt is insoluble due to very long unsaturated carbon chain.

#1611212

Topic: First law of thermodynamics

Which of the following is not correct for an ideal gas as per first low of thermodynamics?

A Adi

Adiabatic process $\Delta U = -w$

- **B** Isothermal process q=-w
- C Cyclic process q = -w
- **D** Isochoric process $\Delta U = q$

Solution

From FLOT $\Delta U = q + w$

for adiabatic process q=0

 $\Delta U = w$

#1611213

Topic: Adsorption

log P

In Freundlich isotherm, $\frac{x}{m} \propto P^a.$ Find the value of a from the following graph.

A -

- $\mathsf{B} = \frac{1}{3}$
- c $\frac{3}{2}$
- D 1

From Freudlich isotherm $\log \frac{x}{m} = \log k + \frac{1}{n} \log p$ slope of curve is $\frac{1}{n} = a = \frac{2}{3}$

#1611216

Topic: Vapour Pressure of Liquid Solutions and Raoult's Law

In a mixture of A and B, having vapour pressure of pure A and pure B as $400mm\,Hg$ and $600mm\,Hg$ respectively, mole fraction of B in liquid phases is 0.5. Calculate total vapour pressure and mole fraction of A and B in vapour phases.

- A 500, 0.4, 0.6
- **B** 500, 0.5, 0.5
- C 450, 0.4, 0.6
- D 450, 0.5, 0.5

Solution

$$P_T = X_A P_{A^o} + X_B P_{B^o}$$

$$= 0.5 \times 400 + 0.5 \times 600$$

$$=500nm$$
 of Hg

$$rac{1}{P_T} = rac{y_A}{P_A^o} + rac{1-y_B}{P_B^o}$$

$$y_A = 0.6 \& y_B = 1 - 0.6 = 0.4$$

#1611219

Topic: Quantum numbers

Arrange the following set of quantum numbers having highest energy of an electron.

(p)
$$n=4$$
 $l=1$ $m=+1$ $s=+rac{1}{2}$

(q)
$$n=4$$
 $l=2$ $m=-1$ $s=-rac{2}{3}$

(r)
$$n=3$$
 $l=2$ $m=0$ $s=+rac{ar{1}}{2}$

(s)
$$n=3$$
 $l=1$ $m=+1$ $s=-rac{1}{2}$

A
$$q>r>p>s$$

B
$$q>p>r>s$$

$${\tt C} \qquad s>p>r>q$$

$$\mathsf{D} \qquad s > r > p > q$$

Solution

We know that n is principle quantum number and l is an azimuthal quantum number.

Also,
$$l=n-1$$

The set of quantum number which have highest value of n+l will have the highest energy and vice versa.

#1611225

Topic: Calculation of number of particles per unit cell of a cubic crystal system

A forms ccp lattice, B occupies half of the octahedral voids and 'O' occupy all the tetrahedral voids. Calculate formula.

 A_2BO_4

- B ABO_4
- C A_2B_2O

 $\text{Effective number of } A=4 \text{ \& effective number of } B=4 \times \frac{1}{4}=2 \text{ \& effective number of } O=8 \text{ \& formula is } A_4B_2O_B \text{ or } A_2BO_4 \text{ or } A$

#1611227

Topic: Boron and aluminium

 B_2H_6 reacts with ${\cal O}_2$ and $H_2{\cal O}$ respectively to form:

- $\mathsf{B} \qquad B_2O_3, BH_4^-$
- C HBO_2, H_3BO_3
- D H_3BO_3, HBO_2

Solution

$$B_2H_6 + 3O_2 \rightarrow B_2O_3 + 3H_2O$$

$$B_2H_6+6H_2O
ightarrow 2H_3BO_3+6H_2$$

#1611231

Topic: Concentrations

Solution of 100ml water contains 0.73g of $Mg(HCO_3)_2$ and 0.81g of $Ca(HCO_3)_2$. Calculate the hardness in terms of ppm of $CaCO_3$.

- A $10^2 ppm$
- \mid B \mid 10^4ppm
- C $5 \times 10^3 ppm$
- D $10^3 ppm$

Solution

$$ppm ext{ of } CaCO_3 = rac{\left(rac{0.73}{146} + rac{0.81}{162}
ight) imes 100}{100} imes 10^6 = 10^4 ppm$$

#1611234

Topic: Solubility product and common ion effect

For $Zr_3(PO_4)_4$ the solubility product is K_{sp} and solubility is S. Find the correct relation.

$$oxed{\mathsf{A}} \hspace{0.5cm} S = \left(rac{K_{sp}}{6912}
ight)^{1/7}$$

$$S = \left(rac{K_{sp}}{216}
ight)^{1/7}$$

$${\sf C} \qquad S = \left(rac{K_{sp}}{216}
ight)^{1/8}$$

D
$$S=\left(rac{K_{sp}}{912}
ight)^{1/3}$$

Solution

$$Zr_{3}(PO_{4})_{4}
ightleftharpoons 3Zr^{4+}_{3s}+4PO_{4s}^{3-}_{4s}$$

$$K_{sp} = (3s)^3 (4s)^4$$

$$=27 imes256s^7$$

$$=6912s^7$$

$$S=\left(rac{K_{sp}}{6912}
ight)^{1/7}$$

#1611247

Topic: Crystal field theory

Subject: Chemistry | 8th April | Shift 1

toppr

Given complexes are low spin complexes,

 $[V(CN)_6]^{4-}$

 $[Cr(NH_{3})_{6}]^{2+}$

 $[Ru(NH_3)_6]^{3+}$

 $[Fe(CN)_6]^{4-}$

then order of magnetic moment (μ) for $V^{2+}, Fe^{2+}, Cr^{+3}, Ru^{3+}$ is:

A
$$V^{2+} > Cr^{2+} > Fe^{2+} > Ru^{3+}$$

B
$$Fe^{2+} > V^{2+} > Cr^{+2} > Ru^{3+}$$

$$lackbox{ C} V^{2+} > C r^{2+} > R u^{3+} > F e^{2+}$$

$${\sf D} \qquad Fe^{2+} > Cr^{3+} > V^{2+} > Ru^{3+}$$

Solution

The magnetic moment is directly proportional to the number of unparied electrons and it is given by formula:

$$\mu = \sqrt{n(n+2)}$$

Here all ligands are strong field ligands thus pairing of unpaired electron takes place.

Here for $[V(CN)]^{4-}$, V shows +2 oxidation state,

 $\therefore V^{2+} = [Ar]3d^3$ (3 unpaired electrons)

For $[Cr(NH_3)_6]^{2+}$, Cr shows +2 oxidation state

 $\therefore Cr^{2+} = [Ar]3d^4$ (2 unpaired electrons)

For $[Ru(NH_3)_6]^{3+}$, Ru^{3+} shows +3 oxidation state

 $\therefore Ru^{3+} = [Kr]4d^5$,(1 unpaired electrons)

Similarly, $\lceil Fe(CN)_6
ceil^{4-}$ will have 0 unpaired electrons.

#1611258

Topic: Electrode potential

Given : $E^o_{S_2O_8^{2-}/SO_4^{2-}}=2.05V$

 $E^o_{Br_2/Br^-} = 1.40 V$

 $E^o_{Au^{3+}/Au} = 1.10 V$

 $E^o_{O_2/H_2O} = 1.20 V$

Which of the following is the strongest oxidizing agent?

 $ig| oldsymbol{\mathsf{A}} ig| oldsymbol{S}_2 O_8^{2-}$

B Br_2

C Au^{+3}

D O_2

Solution

Strongest oxidizing agent has highest value of SRP

#1611269

Topic: Ozone

Assertion

Ozone is getting depleted due to CFC_s

Reason

With the depletion of ozone layer more UV radiation filters into troposphere

- A Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
- B Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
- C Assertion is correct but Reason is incorrect
- D Assertion is incorrect but Reason is correct

Subject: Chemistry | 8th April | Shift 1

toppr

Ozone layer is depleted due to released of chloroflurocarbons (CFCs)

$$CF_2Cl_2(g) \xrightarrow{UV} \overset{ullet}{Cl}(g) + F_2Cl(g)$$

$$ec{Cl}(g) + O_3
ightarrow ec{Cl}O(g) + O_2(g)$$

$$\mathring{ClO}(g) + O(g)
ightarrow \mathring{Cl} + O_2$$

Due to depletion of ozone layer, more UV radiation filters into troposphere.

#1611275

Topic: Alkali metals

In which of the following order of hydration energy correct?

$$Li^+>Na^+>K^+>Rb^+>Cs^+$$

$${\sf B} \qquad Li^+ < Na^+ < K^+ < Rb^+ < Cs^+$$

$${\bf C} \qquad Li^+ > Na^+ > K^+ > Cs^+ > Rb^+$$

$${\rm D} \qquad Li^+ < Na^+ < K^+ < Cs^+ < Rb^+$$

Solution

Hydration decreases with a decrement in charge density of an ion

#1611279

Topic: Thermodynamic principles of metallurgy

Ellingham diagram is used for:

Reduction

B Electrolysis

C Zone refining

D Van-Arkel

Solution

With the help of Ellingham diagram we can select proper reducing agent $(C_{(s)} ext{ or } CO ext{ or } Al)$ for metal compound

#1611283

Topic: Isotopes, isobars, isotones and isoelectronics

In isoelectronic species Cl^-, Ar, Ca^{2+} size differ due to:

nuclear charge

B electronic-electronic repulsion in valence shell

C magnetic quantum number

D principal quantum number

Solution

In isoelectronic species, number of electrons are same but size decrease with increase in atomic number of nuclear charge

#1611300

Topic: Heat capacity, specific heat capacity and molar heat capacity

3 mole of Ag is heated from 300K to 1000K. Calculate ΔH when P=1atm and $C_p=23+0.01T$.

62~kJ/mol

B $45 \ kJ/mol$

C $38 \ kJ/mol$

D $54 \ kJ/mol$

$$egin{align} \Delta H &= \int_{T_1}^{T_2} nCpdT = n \int_{300}^{1000} (23 + 0.01T)dT \ &= 3 \left[23T + rac{0.01T^2}{2}
ight]_{300}^{1000} \ &= 3 \left[rac{2 imes 23 imes 700 + 9100}{2}
ight] \ \end{aligned}$$

 $61950~J/mol \simeq 62~kJ/mol$

#1611307

Topic: Important compounds of transition elements

 $FeC_2O_4, Fe_2(C_2O_4)_3, FeSO_4, Fe_2(SO_4)_3$ one mole each, will react with how many moles of acidified $KMnO_4$?

В :

C 3

D 5

Solution

 $FeC_2O_4 + KMnO_4
ightarrow Fe^{3+} + CO_2 + Mn^{2+}$

$$v. f. = 3v. f = 5$$

$$1\times 3 = mole \times 5$$

$$\mathsf{Mole} = \frac{3}{5}$$

 $Fe_2(C_2O_4)_3 + KMnO_4 o Fe^{3+} + CO_2 + Mn^{2+}$

$$v. f = 6$$
 $v. f = 5$

$$1\times 6 = mole \times 5$$

$$Mole = \frac{6}{\epsilon}$$

$$FeSO_4 + KMnO_4
ightarrow Fe^{3+} + SO_4^{2-} + Mn^{2+}$$

$$v. f = 1$$
 $v. f = 5$

$$1\times 1 = moles \times 5$$

$$\mathsf{Mole} = \frac{1}{5}$$

 $Fe_2(SO_4)_3$ doesn't oxidise

Total moles of $KMnO_4=rac{3}{5}+rac{6}{5}+rac{1}{5}=2$

#1611379

Topic: Rate law expression and order of reaction

For 2A+B
ightarrow C . find the rate law

[A]	[B]	Initial Rate
0.05	0.05	0.045
0.10	0.05	0.09
0.20	0.10	0.72

A R = K[A][B]

$$ig| egin{array}{c|c} egin{array}{c|c} egin{array}{c|c} B & R = k[A][B]^2 \end{array}$$

$${\sf C} \qquad R=k[A^2][B]$$

D
$$R = [A]^2 [B]^2$$

$$\mathsf{Rate} = K[A]^x[B]^y$$

$$r_1 = k[A]_{1^x}[B]_{1^y}$$

$$r_2=k[A]_2^x[B]_2^y$$

$$\frac{r_2}{} = \left(\frac{[A]_2}{}\right)^x$$

$$\frac{r_2}{r_a} = \left(\frac{[A]_2}{[A]_1}\right)^x$$

$$\frac{0.09}{0.045} = \left(\frac{0.1}{0.05}\right)^a$$

$$2=2^x$$
 $\therefore x=1$

$$r_3=k[A]_3^x[B]_3^y$$

$$\frac{r_3}{r_2} = \left(\frac{[A]_3}{[A]_2}\right)^1 \left(\frac{[B]_3}{[B]_1}\right)^y$$

$$\frac{0.72}{0.09} = \left(\frac{0.2}{0.1}\right)^1 \left(\frac{0.1}{0.05}\right)^1$$

$$\frac{0.72}{0.00} = \left(\frac{0.2}{0.1}\right)^1 \left(\frac{0.1}{0.05}\right)^1$$

$$8=2^12^y$$

$$2^y=4$$

$$\therefore y=2$$

$$\therefore R = k[A][B]^2$$

#1611383

Topic: Lanthanoids

Which of the following lanthanoid ions are coloured?

(a)
$$Lu^{+3}$$

(a)
$$Lu^{+3}$$
 (b) Pm^{+3} (c) Sm^{+3} (d) Eu^{+3}

(c)
$$Sm^{+3}$$

(d)
$$Eu^{+3}$$

$${\bf A} \qquad Lu^{+3}, Pm^{+3}, Sm^{+3}$$

$${f C} \qquad Lu^{+3}, Sm^{+3}, Eu^{+3}$$

Solution

 Lu^{+3} colourless $(4f^{14})$

$$Pm^{3+}$$
, Pink $\left(4f^4\right)$

$$Sm^{+3}$$
 yellow $(4f^5)$

$$Eu^{+3}$$
, Pink $(4f^6)$