\#1611023
Topic: Circuit Instruments

In the circuit given below, find the total current drawn from the battery:
A $\frac{3}{24}$
B $\quad \frac{14}{25}$
C $\frac{9}{32}$
D $\frac{3}{20}$
Solution
$R_{e q}=45+\frac{25}{3}=\frac{135+25}{3}=\frac{160}{3}$
$i=\frac{V}{R}=\frac{15}{\frac{160}{3}}=\frac{9}{32}$

\#1611024

Topic: Types of Capacitors

In a parallel plate capacitor of capacitor $1 \mu F$ two plates are given charges $2 \mu C$ and $4 \mu C$ then the potential difference between the plates of the capacitor is:

A 2 Volt
B $\quad 1$ Volt
C 4 Volt
D 3 Volt
Solution

$$
V=\frac{Q}{C}=\frac{1 \mu C}{1 \mu F}=1 \mathrm{Volt}
$$

\#1611025
Topic: Young's Modulus

Two elastic wire $A \& B$ having length $P_{A}=2 m$ and $P_{B}=1.5 m$ and the ratio of young's modules $Y_{A}: Y_{B}$ is $7: 4$. If radius of wire $B\left(r_{B}\right)$ is $2 m m$ then choose the correct value of radiu of wire A. Given that due to application of the same force charge in length in both $A \& B$ is same

B $\quad 1.9 \mathrm{~mm}$

C $\quad 2.7 \mathrm{~mm}$

D $\quad 2 \mathrm{~mm}$

Solution
$Y=\frac{F P}{\pi r^{2} \Delta P}$
$\frac{Y_{A}}{Y_{B}}=\frac{F P_{A}}{\pi r_{A}^{2} \Delta \rho} \times \frac{\pi r_{B}^{2} \Delta \rho}{F P_{B}}$
$\frac{7}{4}=\frac{2}{1.5} \times \frac{2^{2}}{r_{A}^{2}} \Rightarrow r_{A}^{2}=\frac{4 \times 2 \times 2^{2}}{1.5 \times 7}$
$r_{A}=1.7 \mathrm{~mm}$

\#1611027

Topic: Kinetic Energy
Light of wavelength λ is incident on metal surface. Work function of metal is very small compare to kinetic energy of photon. If light of wavelength λ^{\prime} is incident on metal surfac then linear momentum of electron becomes 1.5 of the momentum is previous case. Choose the correct value of λ^{\prime} :

A $\quad\left(\frac{9 \lambda}{4}\right)$

B
c

Solution
$\frac{P^{2}}{2 m}=\frac{h c}{\lambda}$
$\frac{(1.5 P)^{2}}{2 m}=\frac{h c}{\lambda^{\prime}}$
$\frac{1}{2.25}=\frac{\lambda}{\lambda}$
$\lambda^{\prime}=\left(\frac{\lambda}{2.25}\right)=\left(\frac{4 \lambda}{9}\right)$

\#1611029

Topic: Elastic Collisions in One-Dimension

After collision the situation is as shown

Two balls of mass m_{1} and m_{2} where $m_{2}=0.5 m_{1}$, undergo head on collision as shown in figure.
If $v_{3}=0.5 v_{1}$ value of v_{4} is

A $\quad v_{4}=v_{1}+v_{2}$

B $\quad v_{4}=v_{1}+2 v_{2}$

C $\quad v_{4}=2 v_{1}+v_{2}$

D $\quad v_{4}=2 v_{1}+3 v_{2}$
\#1611031
Topic: Electric Dipole
A electric dipole having charge q and $-q$ are placed at distance ' d ' is in equilibrium in a uniform electric filed E. Each charge has mass ' m '. If dipole is displayed by small angl Then its angular frequency of oscillation is:

A

$$
\sqrt{\frac{3 q E}{m d}}
$$

B
$\sqrt{\frac{q E}{2 m d}}$
C
$\sqrt{\frac{2 q E}{m d}}$

D

$$
\sqrt{\frac{2 q E}{3 m d}}
$$

Solution
$\omega^{2}=\frac{p E}{l}=\frac{q d(E)}{\frac{m_{d^{2}}{ }^{2}}{4}+\frac{m_{d^{2}}{ }^{2}}{4}}=\frac{2 q d E}{m_{d^{2}}{ }^{2}}$
$\omega^{2}=\frac{2 q E}{m d}$
$\omega=\sqrt{\frac{2 q E}{m d}}$

\#1611032

Topic: Vector Addition
\vec{A}_{1} and \vec{A}_{2} are two vectors such that $\left|\vec{A}_{1}\right|=3,\left|\vec{A}_{2}\right|=5$ and $\left|\vec{A}_{1}+\vec{A}_{2}\right|=5$ the value of $\left(2 \vec{A}_{1}+3 \vec{A}_{2}\right) \cdot\left(2 \vec{A}_{1}-2 \vec{A}_{2}\right)$ is

A $\frac{237}{2}$
B -123
C $\frac{-337}{2}$
D $\frac{337}{2}$
Solution
$\left(\vec{A}_{1}+\vec{A}_{2}\right) \cdot\left(\vec{A}_{1}+\vec{A}_{2}\right)=\left|\vec{A}_{1}+\vec{A}_{2}\right|^{2}$
$9+25+2\left(\vec{A}_{1} \cdot \vec{A}_{2}\right)=25$
$\left(\vec{A}_{1} \cdot \vec{A}^{2}\right)=\frac{-9}{2}$

$$
\begin{aligned}
& =4 A_{1}^{2}-4 A_{1} \cdot A_{2}+6 A_{1} \cdot A_{2}-6 A_{2}^{2} \\
& =4 \times 9+2 \times\left(\frac{-9}{2}\right)-6 \times 25=-123
\end{aligned}
$$

\#1611034

Topic: Magnetic field

Two perpendicular infinite wires are carrying current i as shown in the figure. The magnetic field at point p is:

A $\frac{\mu_{0} l}{\pi d}$
B $-\frac{\mu_{0} /}{2 \pi d}$
C $\quad \frac{\mu_{0} l}{2 \pi d}$
D Zero
Solution
$B_{1}=\frac{\mu_{0} l}{2 \pi y}$
$B_{2}=\frac{\mu_{0} /}{2 \pi x}$
$B=\frac{\mu_{0} /}{2 \pi y}-\frac{\mu_{0} l}{2 \pi x}=0$
$x=y=d$
\#1611036
Topic: Gauss's Law

[^0]$\begin{array}{ll}\text { A } & R^{3} \\ \text { B } & e^{R / R_{0}} \\ \text { C } & R^{2}\end{array}$
$\mathrm{D}^{\mathrm{D}}\left[\operatorname{en}\left(\frac{R}{R_{0}}\right)\right]^{1 / 2}$
Solution
$\Delta K E+\Delta U=0$
$\left(\frac{1}{2} m v^{2}-0\right)+q\left(v_{f}-v_{i}\right)=0$
$\frac{1}{2} m_{\nu^{2}}+\emptyset\left[-2 k \lambda e n\left(\frac{R}{R_{0}}\right)\right]=0$
$\frac{1}{2} m v^{2}=2 k \lambda q \ln \left(\frac{R}{R_{0}}\right)$
$v=\left[\frac{4 k \lambda q}{m} \ln \left(\frac{R}{R_{0}}\right)\right]^{1 / 2}$

\#1611037

Topic: Free, Forced and Damped Oscillations
A particle is performing damped oscillation with frequency 5 Hz . After every 10 oscillations its amplitude becomes half. find time from beginning after which the amplitude
becomes $\frac{1}{1000}$ of its initial amplitude:

A $\quad 10 s$
B 20 s

C 25 s
D 50 s
Solution
$f=5$
so $T=\frac{1}{5}$
$10 T=\frac{10}{5}=2$
$\frac{A_{0}}{1000}=A_{0}\left(\frac{1}{2}\right)^{t / 2}$
$(2)^{t / 2}=1000$
$\left(\frac{t}{2}\right) \log 2=3$
$t=\frac{6}{\log 2}=20 \mathrm{~s}$

\#1611039

Topic: Potentiometer
A battery of emfE and internal resistance r. The value of external resistance R so that the power across external resistance is maximum:

A r
B $\quad 2 r$
C $\quad \frac{r}{2}$

D $\quad \frac{-}{4}$
Solution
$i=\frac{E}{(R+\eta)}$
P across $R=i^{2} R=\frac{E^{2}}{(R+\eta)^{2}} \times R$
$\frac{d P}{d R}=0$
$R=r$

\#1611040
Topic: Units - Definitions and Systems
If Planck's constant (h), surface tension (s) and moment of inertia (Λ are taken as fundamental quantities, then dimensions of linear momentum (p) will be given as:

A $\quad h_{s}{ }^{2} l^{1 / 2}$

B $\quad h^{1 / 2} s^{1 / 2 l}$
C $\quad h^{0} s^{1 / 2} \rho^{1 / 2}$
D None of these

Solution
$p \equiv h^{x} T^{y} l^{z}$
$M L T^{-1}\left(M L^{2} T^{-1}\right)^{x}\left(M T^{-2}\right)^{y}\left(M l^{2}\right)^{z}$
$M L T^{-1}=M^{x+y+z} \cdot L^{2 x+2 z \times} T^{-x-2 y}$
$x+y+z=1$
$\left.\begin{array}{r}x+z=\frac{1}{2}\end{array}\right\} \Rightarrow y=\frac{1}{2}$
$x+2 y=1 \Rightarrow x+1=1 \Rightarrow x=0$
$P \equiv h^{0} s^{1 / 2} l^{1 / 2}$
\#1611043
Topic: Adiabatic Processes

The pressure v / s volume graph of an ideal gas is given in different thermodynamics process which of the following option in relevant order: (Isochoric, isobaric, isothermal, adiabatic)

C a, c, d, b

D a, b, c, d

\#1611181

Topic: Acceleration due to Gravity
A simple pendulum undergoes 20 oscillation's in 30 seconds. What is the percentage error in the value of acceleration due to gravity provided length of pendulum is 55 cm , least count for measurement of time and length are 1 s and 1 mm respectively.

A 3.4%
B
6.8\%

C 5.5\%

D $\quad 11 \%$
Solution
$g=\frac{4 \pi^{2} P}{T^{2}}$
$\frac{\Delta g}{g}=\frac{\Delta \rho}{\rho}+2 \frac{\Delta T}{T}$
$=\frac{0.1}{55}+2 \frac{1}{30}$
$\frac{\Delta g}{g} \times 100=\frac{10}{55}+\frac{20}{3}=6.85 \%=7 \%$

\#1611183

Topic: Circuit Instruments

If potential gradient on wire $P Q$ is $0.01 \mathrm{~V} / \mathrm{m}$ then the reading of voltmeter is:

A $3 m V$
B 5 mV
C $\quad 7 \mathrm{mV}$
D $9 m V$
Solution
Reading $=$ Potential gradient \times length
$=0.01 \times 0.5$
$=5 \times 10^{-3} V=5 \mathrm{mV}$

\#1611184

Topic: Uniformly Accelerated Motion
(A)

(B)

(C)

(D)

A particle start from rest, with uniform acceleration at time t, choose the correct option.

A A

B $\quad A, B, C$

C A,B,D

D B, C

Solution

$a=$ Constant	Hence (A)
$v=a t$	Hence (B)
$x=\frac{1}{2} a t^{2}$	

\#1611187
Topic: Nuclear Structure
The ratio of density of nuclei of O^{16} and $C_{a} 40$ is:

A $1: 1$

B $\quad 1: 2$

C $\quad 1: 3$

D $\quad 1: 4$

\#1611188

Topic: LCR circuits
AC source of voltage of $V=V_{0} \sin (100 t)$ is connected with box which contain ether $R L$ or $R C$ circuit. If voltage leads the current by phase $\frac{\pi}{4}$, then choose the correct option:

A $R=1 K \Omega, L=10 H$

B $\quad R=1 K \Omega, L=1 H$

C $\quad R=1 K \Omega, C=10 \mu F$

D $\quad R=1 K \Omega, C=1 \mu F$

Hint
$\tan \phi=\frac{X_{L}}{R}$ voltage lead so Circuit is $R L$
$X_{L}=R$
$\omega L=R$
$100 L=R$
\#1611193
Topic: Magnetic Moment

Two magnetic dipoles are lying as shown in figure. the separation ' d ' between them is very large. A point charge Q is projected with some speed v as shown. The force experienced by the charged particle is:

A 0
B $\frac{4 \sqrt{2} \mu_{0} M Q v}{\pi d^{3}}$
C $\frac{\sqrt{2} \mu_{0} M Q v}{\pi d^{3}}$
D $\frac{2 \sqrt{ } 2 \mu_{0} M Q v}{\pi d^{3}}$

Solution

$B_{1}=2\left(\frac{\mu_{0}}{4 \pi}\right) \cdot \frac{M}{(d / 2)^{2}} ; B_{2}=\left(\frac{\mu_{0}}{4 \pi}\right) \cdot \frac{2 M}{(d / 2)^{3}}$
$B_{1}=B_{2}$
\therefore Net magnetic field will be at 45°
\therefore The direction of $B_{\text {net }}$ \& vel. of charge is same, hence charge will experience no force.

\#1611198
Topic: Escape velocity
The temperature of H_{2} gas at which $r m s$ speed of H_{2} molecule is equal to escape speed of a particle from earth surface is:

A $\quad 10^{3} K$
B $\quad 2 \times 10^{3} K$

C
$10^{4} K$
D
$10^{5} K$
Solution
$\sqrt{\frac{3 R T}{m}}=11.2 \mathrm{~km} / \mathrm{s}$
$\frac{3 \times \frac{25}{3} \times T}{2 \times 10^{-3}}=\left(11.2 \times 10^{3}\right)^{2}$
$T=10035.2 K$
$=10^{4} K$
\#1611200
Topic: Refraction at Spherical Surfaces

A convex lens $(f=20 \mathrm{~cm})$ is placed at 80 cm from a concave mirror. An object is placed at 30 cm in front the lens such that position of its final image is same or without the mirr The maximum distance of object and mirror for virtual image to be formed if only mirror is present is:

A 10 cm
B $\quad 20 \mathrm{~cm}$

C $\quad 30 \mathrm{~cm}$

D 50 cm

Solution

Using lens formula $\frac{1}{v}-\frac{1}{-30}=\frac{1}{20} \Rightarrow v=60 \mathrm{~cm}$
Distance of this Image form Mirror is 20 cm . As per given condition Image should form at COC of Mirror.
So that $20 \mathrm{~cm}=2 \mathrm{f}_{M} \Rightarrow f_{M}=10 \mathrm{~cm}$.
hence Maximum distance for virtual image is focal length $=10 \mathrm{~cm}$.

\#1611203

Topic: Rolling Motion

A solid sphere and solid cylinder are in pure rolling on a rough curved surface with the same speed of centre of mass. The ratio of maximum heights reached by the two bodie if they roll without slipping is:

A $\frac{4}{5}$
B $\frac{14}{15}$
C $\quad \frac{7}{10}$
D $\quad \frac{10}{13}$

Solution

$v=R w$
for sphere,
$m g h_{1}=k_{1}=\frac{1}{2} / w^{2}+\frac{1}{2} m v^{2}$
$=\frac{1}{2} \times \frac{2}{5} m R^{2} w^{2}+\frac{1}{2} m v^{2}$
$=m_{\nu^{2}}\left(\frac{1}{5}+\frac{1}{2}\right)=m_{v^{2}}\left(\frac{7}{10}\right)$

For solid cylinder,
$m g h_{2}=k_{2}=\frac{1}{2} m v^{2}+\frac{1}{2} \times \frac{m R^{2}}{2} w^{2}=m v^{2}\left(\frac{1}{2}+\frac{1}{4}\right)=\frac{3 m v^{2}}{4}$
$\therefore \frac{k_{1}}{k_{2}}=\frac{\frac{7}{10}}{\frac{3}{4}}=\frac{7}{10} \times \frac{4}{3}=\frac{14}{15} \Rightarrow \frac{h_{1}}{h_{2}}=\frac{14}{15}$

\#1611209

Topic: Electric Field
In Region of Electric field Given by $\vec{E}=(A x+B) \hat{j}$. Where $A=20$ unit and $B=10$ unit. If Electric potential at $x=1 m$ is V_{1} and at $x=-5 m$ is V_{2}. Then $V_{1}-V_{2}$ is equal to

A 150 V

B $\quad 170 \mathrm{~V}$

C $\quad 140 \mathrm{~V}$
D 180 V
Solution
$v_{f}-v_{i}=-\int E . d x$
$v_{1}-v_{2}=\int_{-5}^{1}(A x+B) d x$
$=-\left(\frac{A x^{2}}{2}+B x\right)^{1}$
$=-\left[\left(\frac{A}{2}+B\right)-\left(\frac{25 A}{2}-5 B\right)\right]$
$=-\left[\frac{20}{2}+10-250+50\right]$
$=[10+10+50-250]$
$=+180$
\#1611218
Topic: Centre of mass

From a rectangular sheet of uniform density a rectangle is cut out as shown in figure. Find new co-ordinate of centre of mass with respect to origin:

A $\quad\left(\frac{a}{12}, \frac{b}{12}\right)$
B $\left(\frac{5 a}{12}, \frac{5 b}{12}\right)$
C $\quad\left(\frac{7 a}{12}, \frac{7 b}{12}\right)$

D None of these
Solution
$x_{c m}=\frac{(a b) \times\left(\frac{a}{2}\right)-\left(\frac{3 a}{4}\right) \times \frac{a b}{4}}{(a b)-\left(\frac{a b}{4}\right)}$
$\frac{a\left[\frac{1}{2}-\frac{3}{16}\right]}{1-\frac{1}{4}}=\frac{a\left[\frac{5}{16}\right]}{\frac{3}{4}}=\frac{5 a}{12} \Rightarrow x_{c m}=\frac{5 a}{12}$

Similarly, $y_{c m}=\frac{5 b}{12}$

\#1611222

Topic: Basics of Projectile Motion
A projectile is thrown from earth with minimum kinetic energy E such that it escapes to infinity. How much energy is required to escape same projectile from surface of moon. Assume density of moon and earth are same and volume of earth is 64 times the volume of moon

A $\frac{E}{64}$
B $\frac{E}{8}$
C $\frac{E}{32}$
D $\frac{E}{16}$
Solution

Let moss of moon be M_{m}
\therefore Mass of Earth $m_{e}=64 M_{m}$
$\frac{M_{e}}{M_{m}}=\frac{\frac{4}{3} \pi R_{e}^{3} \times \rho}{\frac{4}{3} \pi R_{m}^{3} \times \rho}=64 \Rightarrow \frac{R_{e}^{3}}{R_{m}^{3}}=64 \Rightarrow R_{e}=4 R_{m}$
$\frac{E}{E^{\prime}}=\frac{\frac{G M_{e} m}{R_{e}}}{\frac{G M_{m} m}{R_{m}}}=\frac{M_{e} R_{m}}{M_{m} R_{e}}=\left(\frac{M_{e}}{M_{m}}\right) \times\left(\frac{R_{m}}{R_{e}}\right)=(64) \times\left(\frac{1}{4}\right)=16$
$\Rightarrow \frac{E}{E^{\prime}}=16 \Rightarrow E^{\prime}=\frac{E}{16}$
\#1611224
Topic: Basics of AC
An a.c. circuit has input voltage $\varepsilon=\varepsilon_{0} \sin (100 t)$ such that phase difference between current and voltage is $\frac{\pi}{4}$. then the suitable circuit components

A $C=10 \mu F, R=1 K \Omega$

B $\quad R=10 K \Omega, C=1 \mu F$

C $L=1 \mathrm{mH}, R=10 \mathrm{~K} \Omega$

D $\quad L=10 \mathrm{mH}, R=1 \mathrm{~K} \Omega$
\#1611233
Topic: Amplitude Modulation
The distance between a receiver and transmitter is 50 km . the height of transmitter tower if height of receiver is 35 m is (given Radius of earth $=6400 \mathrm{~km}$)

A $\quad 65 \mathrm{~m}$

B $\quad 70 m$

C $\quad 80 \mathrm{~m}$

D $\quad 90 \mathrm{~m}$

[^0]: A charge particle q released at a distance R_{0} from the infinite long wire of linear charge density λ. then velocity at distance R from the wire will be proportional to:

