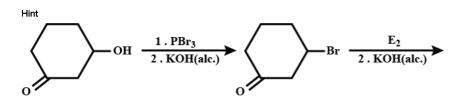
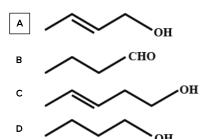

Topic: Methods of preparation of haloalkanes

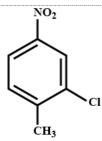


The product of the following reaction is :



#1611911

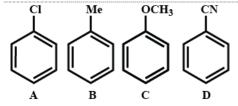
Topic: Esters


Which of the following is the major product of give reaction:

toppr

#1611912

Topic: Nomenclature of organic compounds



Write the IUPAC name of given compound

- A 1-Choro 2- methyl 5 nitro compound
- B 2-Chloro 1- methyl 4 nitro benzene
- C 3-Chloro-4-methyl 1-nitro benzene
- D 5-Chloro 4- methyl 1 nitro benzene

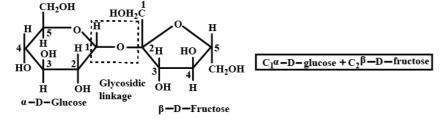
#1611915

Topic: Characteristics of arenes

Arrange the following compound in the correct increasing rate of aromatic electrophilic substitution.

- A \$\$A
- **B** \$\$D
- C \$\$C
- D \$\$C

#1611920


Topic: Disaccharides and polysaccharides

Which of the following statement is not true for sucrose?

- A It is called invert sugar
- B It is non -reducing sugar
- C It has glycisidic linkage between C_1 of α glucose and C_1 of β fructose
- D On the hydrolysis given *D* Glucose and *D*-Fructose

Hint

Sucrose is not a reducing sugar , eg it will not reduce fehling's solution of Tolloen's regnet. It does not form an oxime or an asazone, and does not undergo mutarotatio. This incidentes that hemiacetal group is not present in the ring Sucrose (Cane sugar $\overset{H_2O}{\rightarrow}$ α – glucose + β – fructose). In sucrose two monosaccharides are joined together by an oxide linkage formed by an oxide linkage. In sucrose linkage is between C1 of α and C_2 of β – frutose. Since the reducing group of glucose and fructose are involved in glycisidic bond formation, sucrose is non reducing sugar.

toppr

#1611923

Topic: Study of d-Block elements

Match the following catalyst with their products-

Sr	Column 1	Sr	Column 2
1.	TiCl ₄ + AlCl ₃	a.	Ethanal
2.	V ₂ O ₅	b.	NH ₃
3.	Fe	c.	Polyethylene
4.	Pd	d.	H ₂ SO ₄

A
$$(i) - B; (ii) - A; (iii) - D; (iv) - C$$

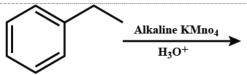
B
$$(i) - C; (ii) - D; (iii) - B; (iv) - A$$

#1611925

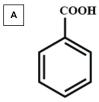
Topic: Greenhouse effect and global warming

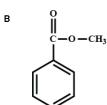
What is the effect of release of \mathcal{CO}_2 gas on atmosphere?

A Global warming

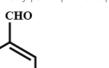

B Photochemical smog

C Ozone layer depletion

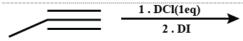

D Tsunami

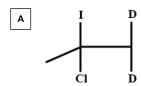

#1611926

Topic: Methods of preparation of carboxylic acids

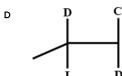


The correct product of the following reaction is

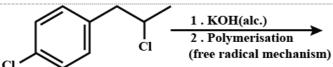


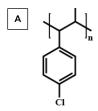


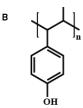

Topic: Characteristics of alkynes



Write the product of the given reaction:


B Cl I




#1611932

Topic: Preparation of some addition polymers

Polymer is:

Topic: Diazonium salts

 χ is mixed with a mixture of phenol and aniline in acidic medium. The product obtained is:

B
$$\bigcirc$$
 N=N-O-OH

C \bigcirc N=N-O-O

D N=N-NH-O

$$\begin{array}{c|c}
 & \text{NH}_2 \\
\hline
 & \text{NaNO}_2 + \text{HCl} \\
\hline
 & 0^{\circ}\text{C}
\end{array}$$

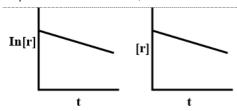
$$\begin{array}{c}
 & \text{OH} & \text{NH}_2 \\
\hline
 & \text$$

#1611939

Topic: Werner's Theory

In ${\it CuSO}_4.5{\it H}_2{\it O}$ how many molecules of water are imdirectly connected to Cu

A 5


- С 2
- D

Hint

 $\text{In } \textit{CuSO}_4.5\textit{H}_2\textit{O}, \text{Four water molecules form coordinate bond with } \textit{Cu}_{2+} \text{ ion while one water molecule is associated with } \textit{H} \text{-bond bond}$

#1611944

Topic: Determination of rate law, rate constant and order of a reaction

[r]= concentration of reactant and t be the time.

Identify the order is correct option for order:-

- Α 1 and 0
- В 2 and 3
- С 3 and 2
- 0 and 2 D

Hint

For zero order

$$C_A = C_{A_0} - kt$$

for first order

$$C_A = C_{A_0 e^{-kt}}$$

or,
$$\ln \frac{C_A}{C_{A_0}} = -kt$$

or In C_A - IN $C_{A_0} = -kt$

or, $\ln C_A = \ln C_{A_0} - kt$

#1611948

Topic: Vapour Pressure of Liquid Solutions and Raoult's Law

The vapour pressure of pure M and N are 700mm of Hg and 450mm of Hg respectively. which of the following option is correct?

Given : X_N , X_M mole fraction of N and M in liquid phase

 Y_N , Y_M = mole fraction of N and M in vapour phase.

- $X_M X_N > Y_M Y_N$ Α
- С
- D

Hint

Mole fraction of more voltatile component increase in vapour phase $(P_N^o < P_M^o)$

#1611953

Topic: Entropy and gibbs free energy

Consider $Zn + C_U^{2+} + Z_{\Pi}^2 + C_U$ If the standard emf is $E_{cell}^o = 2.0 V$ and F = 96500 C

Find ∆G⁰(kJmol)

A -388

B +388

C -194

D +194

Hint

$$\Delta G^0 = -nFE_{Cell}^0 = -2 \times 96500 \times 2.0 \times 10^{-3} = -388 kJ/mol$$

#1611957

Topic: Osmotic pressure

A solution of XY (100% ionised has osmotic pressure equal to four times the osmatic pressure of 0.01 MBaCl₂ (100% ionised) .Find the molarity of XY

A 6 × 10 ⁻²M

B 3 × 10 ⁻² *M*

C $4 \times 10^{-2} M$

D $12 \times 10^{-2} M$

Hint

 $\pi_{xy} = 4\pi_{BaCl_2}$

 $i[XY] = 4 \times i \times [BaC^{l}_{2}]$

 \Rightarrow 2 × [XY] = 4 × 3 × 0.01

 $\Rightarrow [XY] = 0.06M$

#161196

Topic: Emission and Absorption spectra

What is the ratio of $\Delta_V = v_{max} - v_{min}$ for spectral lines corresponding to lyman and Balmer series for hydrogen

A 9:4

B 4:9

C 5:7

D 7:5

Hint

$$\frac{(\Delta v)Lyman}{(\Delta v)Balmer} = \frac{1 - \left(1 - \frac{1}{4}\right)}{\frac{1}{4} - \left(\frac{1}{4} - \frac{1}{9}\right)} = \frac{\frac{1}{4}}{\frac{1}{4}} = \frac{9}{4}$$

#1611963

Topic: Some basic terms and concepts

Which of the following are path function

A. W

B. *Q*

C. Q+ W

D. *H - TS*

A A and D

В

A and B

- C A,B and D
- D A,C and D

toppr

Hint

W,Q are path function $Q + W = \Delta E$, H - TS = G are state function.

#1611966

Topic: Behaviour of real gases - Deviations from ideal behaviour

Given a and b values for Xe, Kr, Ar and He are

	Xe	Kr	Ar	He
$a(L^2bar/mol^2)$	4.1	2.3	1.3	0.03
b(L/mol)	0.1	0.04	0.03	0.02

The gas with highest T_c is:

Хe

- Α
- B Kr
- C Ar
- D He

Hint

$$T_C \propto \left(\frac{a}{b}\right)$$

#1611969

Topic: Some basic terms and concepts

Consider the graph

Identify correct option:

- Α
- $\Delta U_a = \Delta_b, Q_b > Q_a$
- $\mathbf{B} \qquad \Delta_{a} > \Delta U_{b}, \ Q_{a} = Q_{b}$
- C \$\$\Delta U_a=\Delta U_b,Q_a
- $D \qquad \Delta U_{\partial} = \Delta U_{b}, Q_{\partial} = Q_{b}$

Hint

 ΔU - state function

- $\Delta U_a = \Delta b$
- $q_a + W_a = q_b + W_b$
- $q_a-q_b=w_b-W_a>0$

#1611972

Topic: Molecular orbital theory

Out of C_2 , F_2 , O_2 , NO which will be stabilized after forming anion?

- Α
- C_2
- \mathbf{B} F_2

ubiect:	Chemistry 9th April 2019 Shift 1	
C		
	toppr	
D	NO	
#16119		
	Nitric acid and oxides of nitrogen	
Arrang	e in the increasing order of oxidation state to nitrogen for following nitrogen oxides N_2O , NO_2 , NO_2 , NO_2 , NO_3	
Α	\$\$N_2O	
В	\$\$NO	
С	\$\$N_2O	
D D	\$\$NO_2N_2O_2	
_	ψ.···Ο_2.··_2.0_2	
Hint		
Nitro		
N ₂ O	+1 +2	
N ₂ O		
NO ₂		
#16119	24	
	Carbon	
C ₆₀ is	aromatic allotrope of carbon containing	
A	18 Pentagon ,14 hexagons	
В	16 pentagons, 16 hexagons	
С	12 Pentagons ,20 hexagons	
D	20 pentagons , ₁₂ hexagons	
Hint		
C ₆₀ cc	ntains 12 Pentagons,20 hexagonas	
#16119	36 General Introduction	
	of the following ores contain fluorine>	
Α	Malachite	
В	Sphalerite	
С	Cryolite	
D	Bauxite	
Hint Malack	site CUCO CUOLA	
	ite- $CuCO_3Cu(OH)_2$ rite- ZnS	

Topic: Study of d-Block elements

Bauxite - AI_2O_3 .2 H_2O Cryolite- Na_3AIF_6

Which of the following will have highest difference between $\it IE_1$ and $\it IE_2$

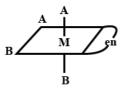
Α

В Mg

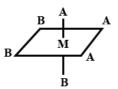
С Sr

D Sc

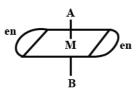
Hint

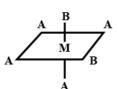

Element	nent IE ₁ (kj/mol) IE ₂ (kj/mol)		Difference
К	419	3052	2633
Mg	737	1450	713
Sr	549	1064	515
Sc	633	1235	602

#1611992


Topic: Isomerism in coordination compounds

Which of the following will show optically acitivy





В

С

Hint

 $[\mathit{M}(\mathit{AA})a_2B_2]$ shows optical activity in cis arrangement

#1611997

Topic: Study of d-Block elements

Which of the following orbitals are degenerate for $[Cr(H_2O_6)^{3+}]$

Α

$$d_{x^2-y^2}, d_{xy}$$

В

$$a_{xy}, a_{y}$$

С

$$C \qquad d_{\chi^2 - y^2}, \, d_{yz}$$

D d_{z^2} , dxy

Hint

 $[\mathit{Cr}(H_2\mathit{O})_{6}]^{3+} \text{ has } \mathit{d}^2sp^3 \text{ hybridization }.\mathit{dxy}, \mathit{dyz}, \mathit{dzx}, \text{orbitals are degenerate}.$

toppr