

Topic: Special Cases of Relative Motion

A man can swim in still water at 4m/s. River is flowing at 2m/s. The angle with downstream at which he should swim wo cross the river with minimum drift is:

$\dot{V}_{mr} = \dot{V}_{m} - \dot{V}_{r}$ $\dot{V}_{m} = \dot{V}_{mr} + \dot{V}_{r}$ $\sin\theta = \frac{|\dot{V}_{r}|}{|}\dot{V}_{mr}| = \frac{2}{4} = \frac{1}{2}$

θ = 30°

Angle with downstream is 120°

#1611910

Topic: Elastic Collisions in One-Dimension

An object A of mass m with initial velocity u collides with a stationary object B. After elastic collision A moves with $\frac{u}{4}$. Calculate mass of <i>B</i> .

#1611913

Topic: Moment of Inertia of Common Bodies

A disc of moment of inertia / is rotating due to external torque. Its kinetic energy is equal to $K\theta^2$, where K is the positive constant. Its angular acceleration at an angle θ will be:

Α	<u>7<i>K</i>θ</u> Ι
в	<u>6КӨ</u> /
С	<u>2КӨ</u> /
D	$\frac{4K\theta}{I}$

Topic: Resistance and Resistivity

A wire of length *P* and resistance *R* is bent in form of square as shown in figure. If *E* is a mid point of side *DA*, then equivalent resistance between points *E* & *A* is:

Solution

#1611928

Topic: Amplitude Modulation

In amplitude modulation equation of messenger wave is $x_1 = A_{0sinwmt}$ and that of carrier wave is $x_2 = A_{Coswct}$. The equation of amplitude modulated wave is:

$$\begin{array}{|c|c|c|c|} \hline \mathbf{A} & x = Accos\omega ct + \frac{A_0}{2}[sin(\omega m + \omega c)t + sin(\omega c - \omega m)t] \\ \hline \mathbf{B} & x = Accos\omega ct - \frac{A_0}{2}[sin(\omega m + \omega c)t + sin(\omega c - \omega m)t] \\ \hline \mathbf{C} & x = Accos\omega ct + \frac{A_0}{4}[sin(\omega m + \omega c)t + sin(\omega c - \omega m)t] \\ \hline \mathbf{D} & x = Acsin\omega ct + \frac{A_0}{4}[sin(\omega m + \omega c)t + sin(\omega c - \omega m)t] \\ \end{array}$$

Topic: Transistor

For a common emitter transistor working in active state, following data is given $R_L = 1K\Omega V_{in} = 10 mV$, $\Delta I_B = 15 \mu A$, $\Delta I_C = 3 mA$. The input resistance n & voltage fain A_V for the transistor are:

#1611945

Topic: Capacitance

A capacitor of capacitance 5μ F is charged with 5μ C charge. Its capacitance is changed to 2μ F by some external agent. The work done by external agent is:

#1611950

Topic: Introduction to Sound Waves

 $=\frac{25\times10^{-6}}{2}\left(\frac{3}{10}\right)=\frac{75}{2}\times10^{-7}J=37.5\times10^{-7}J$

The equation of a sound wave at 0^{o} is given as $y = A \sin(1000t - 3x)$. The speed at some other temperature τ is given 336m/s. The value of τ is

at 0°C

 $y = A\sin(1000t - 3x)$ $v_1 = \frac{w}{k} = \frac{1000}{3}$ at temperature τ , $v_2 = 336m/s$ $\frac{v_1}{v_2} = \sqrt{\frac{T_1}{T_2}}$ $\Rightarrow \frac{1000}{3} = \sqrt{\frac{273}{T}}$

$$\Rightarrow \frac{3}{336} = \sqrt{-1}$$
$$\Rightarrow T = 277.41k$$

i.e $T = 4.4^{\circ}C$

#1611955

Topic: Gravitational Field

A solid sphere of radius 'a' amd mass 'm' is surrounded by concentric spherical shell of thickness '2a' and mass '2m'. The gravitational field at a distance 3a from their common centers is

Solution

#1611959

A ring disc and solid sphere are having same speed of their COM at the bottom of incline as shown in the figure. If surface of incline is sufficiently rough. The ratio of height by ring, disc and sphere is.

 $mgh = \frac{1}{2}m_V^2(1+k)$ $h_1:h_2:h_3 = 1+k_1:1+k_2:1+k_3$ $h_1:h_2:h_3 = 1+1:1+1/2:1+2/5$ $h_1:h_2:h_3 = 2:3/2:7/5$ $h_1:h_2:h_3 = 20:15:14$

#1611964

Topic: Introduction to Kinetic Theory

Considering all type of degrees of freedom for HCI molecule of mass m having V_{rms} as \bar{v} , the temperature of gas will be

#1611970

Topic: Measuring Instruments

The time period of a simple pendulum is air is 7. Now the pendulum is submerged in a liquid of density $\frac{\rho}{16}$ where ρ is density of the bob of the pendulum. The new time period

of oscillation is

Topic: Solenoid and Toroid

A solenoid has fixed N number of turns and fixed radius 'a' its length is given by 't' which can be varied. Its self-inductance is proportional to

Solution

#1611977

Topic: Magnetic field

The magnetic force between the infinite wire and the square loop is

Solution

toppr

Topic: Work and Energy

#1611989

Topic: Interference

In YDSE, slab of thickness t and refractive index μ is placed in front of any slit. Then displacement of central maximum in terms of fringe width when light of wavelength λ is

incident on system is

Displacement of central maximum (y)

$$= (\mu - 1)t = \frac{dy}{D}$$

$$y = \frac{\lambda D(\mu - 1)t}{\lambda d} \qquad \left(\beta = \frac{\lambda D}{d}\right)$$

$$sy = \frac{\beta(\mu - 1)t}{\lambda}$$

#1611991

Topic: Atomic Spectra and Spectral Series

In H-atm spectrum V is the wave number

 $V_1 = V_{min} + V_{max}$ for Lyman series

 $V_1 = V_{min} + V_{max}$ for Balmer series then V_1 : V_2

#1611995

Topic: Spherical Mirrors

At what distance from his face a person should concave mirrors of focal length 0.4m so that magnification in 5 times for a virtual image

#1611999

Topic: Errors, Accuracy and Precision

The mass and sides of a cube given as (10kg ± 0.1) and (0.1m ± 0.01), the relative error in density is: A 0.31 B 0.5 C 0.62 D 0.29 Solutions

o toppr

Topic: Displacement in SHM

A string fixed at both ends, oscillate in 4th harmonic. The displacement of a particle of string is given as:

 $Y = 2A\sin(5\pi x)\cos(100\pi t)$. Then find the length of the string?

#1612040

Topic: Basics of Projectile Motion

Particle is projected vertically upward from ground. Which of the following plots best describe the momentum vs height from the ground?

 $v^{2} = u^{2} - 2gh$ $v = \sqrt{u^{2} - 2gh}$ $|p| = mv = m\sqrt{u^{2} - 2gh} \Rightarrow p^{2} = m^{2}u^{2} - 2mgh$

toppr

Topic: Adiabatic Processes

A thermodynamic system undergoes two processed P_1 and P_2 from $A \Rightarrow B$ as shown in P - V diagram. Choose the correct option.

 $\mathbf{D} \qquad \Delta U_{P1} < \Delta U_{P2}, \, Q_{P1} = Q_{P2}$

Determine the charge on capacitor in steady state:

#1612053

Topic: Electric Charge

A charged particle $(Q = 10^{-4}C)$ is released from rest at z = 0 in magnetic field given as $\stackrel{\bullet}{B} = B_0 \cos(\omega t - kz)\hat{}_i + B_1 \cos(\omega t + kz)\hat{}_j$ where $B_0 = 3 \times 10^{-5}T$ and $B_1 = 2 \times 10^{-6}T$. Then the rms value of force acting on particle is?

Solution

The electric field in the region is:

 $\dot{E} = -cB_0\cos(\omega t - kz)\hat{j} - cB_1\cos(\omega t + kz)\hat{j}$

so for charge released from rest at z = 0, the rms value of force is:

$$F_{rms} = g \sqrt{\left(\frac{cB_0}{\sqrt{2}}\right)^2 + \left(\frac{cB_1}{\sqrt{2}}\right)^2}$$

= 10⁻⁴ × $\frac{3 \times 10^8}{\sqrt{2}} \sqrt{(30 \times 10^{-6})^2 + (2 \times 10^{-6})^2}$
= 10⁻⁴ × $\frac{3 \times 10^8}{\sqrt{2}} \sqrt{904} \times 10^{-6} = 0.63$

0

toppr

-

Mass'm' of a liquid rises inside a capillary of radius 'r'. The mass of fluid that rises when a capillary of radius "2r" is used is

Solution

 $m = \rho A h$

 $m = \rho \pi_r^2 \frac{2 T \cos \theta}{\rho q r} \Rightarrow m \propto r$

#1612060

с

 $\left(\frac{-kq^2}{a} + \frac{kqQa}{2q^2}\right)$

Topic: Gas Laws

r.m.s. speed of ideal gas at $_{127}$ °C is $_{200}$ m/s, the r.m.s. speed of same ideal gas at temperature $_{227}$ °C is:
A 100√5
B 200√5
C 100√15
D 100√10
Solution
$v = \sqrt{\frac{3RT}{M}}$
$\frac{v_1}{v_2} = \sqrt{\frac{\tau_1}{\tau_2}} = \frac{200}{v_2} = \sqrt{\frac{400}{500}}$
$v_2 = 100 \sqrt{5}$
#1612074 Topic: Electric Charge
#1612074 Topic: Electric Charge d +Q
#1612074 Topic: Electric Charge
#1612074 Topic: Electric Charge $d \rightarrow +Q$ $-q \leftarrow a \rightarrow +q$
#1612074 Topic: Electric Charge $d \rightarrow +Q$ $-q \leftarrow a \rightarrow +q$ Three point charges $-q, q$ and Q are arranged as given in figure:
#1612074 Topic: Electric Charge $d \rightarrow +Q$ $-q \leftarrow a \rightarrow +q$ Three point charges $-q, q$ and Q are arranged as given in figure: If d is distance from centre of $-q$ and $+q$ to Q and $d >>> a$, then the potential energy of given system is:
#1612074 Topic: Electric Charge $\begin{array}{c} & d \\ & & \\ & & \\ & -q \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ $

Download other JEE Main Answer Keys here:https://www.toppr.com/bytes/jee-main-answer-keys/

D
$$\left(\frac{-kq^2}{a} + \frac{kqQa}{d^2}\right)$$

Topic: Stopping Potential and Einstein's Photoelectric Equation
Light is incident on a metal plate whose work function is 2 <i>eV</i> . Electric field associated with light is given by $E = E_0 \sin \left(\omega t - \frac{2\pi}{5 \times 10^{-7}} x \right)$ [S.I. unit]. If energy of photon is given by
$\frac{12375}{\lambda(in\mathring{A}}eV$ then stopping potential is.
A 2.48 <i>eV</i>
B 0.48 <i>eV</i>
C 0.78eV
D 1.24 <i>eV</i>
Solution
$K = \frac{2\pi}{5 \times 10^{-7}} m$
$\lambda = 5 \times 10^{-7} m = 5000 \text{\AA}$
Energy of photon $=\frac{12375}{5000} = 2.475 eV$
stopping potential = $\frac{hc}{\lambda} - \phi = \left[\frac{2.475eV - 2eV}{e}\right]$
= 0.475 <i>V</i>

#1612088

Topic: Atomic Spectra and Spectral Series

Wavelength of the first line of Balmer series is 600 nm. The wavelength of second line of the Balmer series will be:

