\#1611906

Topic: Acceleration
$\vec{r}=15 t^{2}{ }_{t}+\left(20-20 t^{2}\right) \hat{j}$
Find magnitude of acceleration at $t=1 \mathrm{sec}$.

A $\quad 30 \mathrm{~m} / \mathrm{s}^{2}$
B $\quad 40 \mathrm{~m} / \mathrm{s}^{2}$
C $\quad 70 \mathrm{~m} / \mathrm{s}^{2}$
D $\quad 50 \mathrm{~m} / \mathrm{s}^{2}$
Solution
$\vec{a}=\frac{d^{2} r}{d t^{2}}$
$\Rightarrow \vec{a}=30 \hat{i}-40 \hat{j}$
$|a|=50 \mathrm{~m} / \mathrm{s}^{2}$

\#1611907

Topic: Speed of Sound
A string of length 2 m is fixed at two ends. It is in resonance with a tuning fork of frequency 240 Hz in its third harmonic. Than speed of sound wave in string and its fundamente frequency is:

A $\quad 240 \mathrm{~m} / \mathrm{s}, 80 \mathrm{~Hz}$
B $320 \mathrm{~m} / \mathrm{s}, 80 \mathrm{~Hz}$

C $\quad 640 \mathrm{~m} / \mathrm{s}, 80 \mathrm{~Hz}$

D $120 \mathrm{~m} / \mathrm{s}, 40 \mathrm{~Hz}$
Solution
$f_{3}=\frac{3 V}{2 L}=240$
$\frac{3 \times V}{2 \times 2}=240$
$V=320 \mathrm{~m} / \mathrm{s}$
$f_{0}=\frac{V}{2 L}=\frac{320}{2 \times 2}=80 \mathrm{~Hz}$

\#1611914

Topic: Organ Pipes
$A \& B$ move in opposite directions with same speed $v=20 \mathrm{~m} / \mathrm{s}$, if frequency heard by A is 2000 Hz than orginal frequency of B is.

A $\quad 1950 \mathrm{~Hz}$

B $\quad 2350 \mathrm{~Hz}$
C $\quad 2250 \mathrm{~Hz}$

D $\quad 2550 \mathrm{~Hz}$

\#1611917

Topic: Resistance and Resistivity
A uniform wire of resistance $R=3 \Omega$ and length ρ is stretched to double its length. Now it is bent to form a circular loop and two points $P \& Q$ lies on the loop such that they subtend 60° angle at centre. The equivalent resistance between two points $P \& Q$ is:

A $\frac{5}{3} \Omega$
B $\quad 12 \Omega$
C $\quad \frac{3}{5} \Omega$
D $\frac{1}{12} \Omega$

\#1611922

Topic: Density
A cubical block is initially floating on water such that its $\frac{4}{5}$ th volume is submersed in water. Now oil is poured on water and when block attains equilibrium its half volume is in water and half volume is in oil. then relative density of oil is:

A $\frac{4}{5}$
B $\frac{3}{5}$
C $\quad \frac{2}{5}$
D $\frac{5}{3}$
Solution
$\frac{4}{5} V \rho_{w} g=m g \quad \ldots$ (i)
$\frac{V}{2} \rho_{w} g+\frac{V}{2} \rho^{\prime} g=m g=\frac{4}{5} V \rho_{w} g$
$\frac{1}{2} \rho_{w}+\frac{\rho^{\prime}}{2}=\frac{4}{5} \rho_{w}$
$\frac{\rho^{\prime}}{2}=\rho_{n}\left[\frac{4}{5}-\frac{1}{2}\right]$
$\frac{\rho^{\prime}}{\rho_{w}}=\frac{3}{5}$

\#1611931

Topic: Reflection at Plane Surface
Light of intensity $50 \mathrm{~W} / \mathrm{m}^{2}$ is incident on a area of $1 \mathrm{~m}^{2}$ in such a way that 25% of light is reflected back. Find the the force exerted by light on surface if light incidents perpendicularly.

A $\quad 10.8 \times 10^{-8} \mathrm{~N}$

B $\quad 15.8 \times 10^{-8} \mathrm{~N}$
C $\quad 20.8 \times 10^{-8} \mathrm{~N}$
D $\quad 25.8 \times 10^{-8} \mathrm{~N}$

Solution
$P=\frac{l}{C}(1+r)$
$P=\frac{1.25 \times 50}{3 \times 10^{8}}$
$F=\frac{1.25 \times 50}{3 \times 10^{8}} \times=\frac{12.5 \times 50}{3 \times 10^{8}}=\frac{62.5}{3} \times 10^{-8}$
$=20.8 \times 10^{-8} \mathrm{~N}$

\#1611935

Topic: Energy in a Capacitor

Two conductors of same crass-section and conductivities $K, 3 K$ and lengths $3 d$ and d respectively are connected end to end as shown in figure. Temperature of end of first conductor is θ_{1} and that of second conductor is θ_{2}. The temperature of junction in steady state is $\left(\theta_{2}>\theta_{1}\right)$.

A $\frac{10 \theta_{2}+9 \theta_{1}}{19}$
B $\frac{\theta_{2}+9 \theta}{10}$
C $\frac{9 \theta_{2}+\theta_{1}}{10}$
D $\frac{9 \theta_{2}+10 \theta_{1}}{19}$

Solution

Equating heat current in both slabs
$\frac{K\left(\theta-\theta_{1}\right)}{3 d}=\frac{3 K\left(\theta_{2}-\theta\right)}{d}$
$\theta-\theta_{1}=9 \theta_{2}-9 \theta$
$10 \theta=9 \theta_{2}+\theta_{1}$
$\theta=\frac{9 \theta_{2}+\theta_{1}}{10}$

\#1611941

Topic: Antenna Height and Range
Height of antenna of transmitter and receiver is proportional to:

A Frequency of carrier wave

B $\frac{1}{\text { modulation frequency }}$
C Both

D None of these

\#1611943

Topic: Logic Gates

The output of the given combination of gates is equivalent to:

A NAND
B $O R$

C AND

D NOR

Solution

$\bar{A} \cdot \bar{B}=A+B$

\#1611946

Topic: Angular velocity

A uniform rod of mass M and length L hinged at centre is rotating in horizontal plane with angular speed ω_{0}. Now two objects each of mass m are kept on rod near the hinge c both sides. They starts sliding towards ends. Find ω of rod finally.

A $\frac{M \omega_{0}}{6 M+m}$
B $\frac{M \omega_{0}}{M+6 m}$
C $\quad \frac{6 M \omega_{0}}{M+m}$
D $\frac{M \omega_{0}}{M+2 m}$

Solution

Applying conservation of angular momentum.
$\left(\frac{M_{L}{ }^{2}}{12}+m 0^{2}+m 0^{2}\right) \omega_{0}=\left(\frac{M_{L}{ }^{2}}{12}+m\left(\frac{L}{2}\right)^{2}+m\left(\frac{L}{2}\right)^{2}\right) \omega$
$\Rightarrow \frac{M L^{2}}{12} \omega_{0}=\left(\frac{M_{L}^{2}}{12}+\frac{M_{L}^{2}}{2}\right) \omega$
we get, $\omega=\frac{M \omega_{0}}{M+6 m}$

\#1611949

Topic: Moment of Inertia of Common Bodies
The moment of inertia of a rigid body is $1.5 \mathrm{~kg} \times \mathrm{m}^{2}$ and its initial angular velocity is zero. it starts rotating with uniform angular acceleration $\alpha=20 \mathrm{rad} / \mathrm{sec}^{2}$ to achieve a rotational $K E=1200 \mathrm{~J}$. find the time required for this:

A $\quad 20 \mathrm{sec}$

B $\quad 200 \mathrm{sec}$
C 2 sec
D $\quad 0.2 \mathrm{sec}$
Solution
From $\omega=\omega_{0}+\alpha t$
we get $\omega=20 t$
Rotational $K E \Rightarrow \frac{1}{2} / W^{2}=1200 \mathrm{~J}$
$\frac{1}{2}(105)\left(20 t^{2}=1200\right.$
$t^{2}=4$
$t=2 \mathrm{sec}$.

\#1611952

Topic: Static Friction

A wedge of mass $4 m$ is initially at rest on frictionless horizontal surface. A small block of mass m moving with speed v_{0} and climbs on wedge. Find maximum height achieved k block.

$$
\text { A } \quad \frac{5 v_{0}^{2}}{2 g}
$$

Subject: Physics | 9th April 2019 | Shift 2

B $\frac{2}{5} \frac{v_{0}^{2}}{g}$
C $\quad \frac{v_{0}^{2}}{2 g}$
D $\frac{2 v_{0}^{2}}{g}$

Solution

Applying conservation of linear momentum,
$m v_{0}=(m+4 m) v$
we get, $v=\frac{v_{0}}{5}$

Applying conservation of mechanical energy
$\frac{1}{2} m v_{0}^{2}=\frac{1}{2}(m+4 m) v^{2}+m g H$
$m g H=\frac{1}{2} m v_{0}^{2}=\frac{1}{2} \frac{m v_{0}^{2}}{5}=\frac{1}{2} m v_{0}^{2} \frac{4}{5}$
$m g H=\frac{4 m v_{0}^{2}}{10}$
$H=\frac{2}{5} \frac{v_{0}^{2}}{g}$

\#1611962

Topic: Magnetic field
A galvanometer of number of turns 175 , having $1 \mathrm{~cm}^{2}$ area, turns through 1° when a current of 1 mA is passed. Find magnetic field if torsional constant of spring is $10^{-6} N-m$

A $10^{-4} T$
B $\quad 10^{-3} T$

C $\quad 10^{-5} T$

D $\quad 10^{-2} T$
Solution
$t_{M}=\tau s$
$\mathrm{BINA}=C \phi$
$B=\frac{C \phi}{I N A}=\frac{10^{-6}}{10^{-3 \times 175 \times 10^{-4}} \frac{\pi}{180}=\frac{\pi}{18 \times 175}=0.0010=10^{-3} \mathrm{~T}, ~(1)}$

\#1611967

Topic: Dual Nature
Two particles of de-broglie wavelength λ_{x} and λ_{y} are moving in opposite directions. find dBroglie wavelength after perfectly inelastic collision:

A $\frac{\lambda_{x} \lambda_{y}}{\left|\lambda_{x}-\lambda_{y}\right|}$
B $\frac{2 \lambda_{x} \lambda_{y}}{\lambda_{x}-\lambda_{y}}$
c $\frac{\lambda_{x} \lambda_{y}^{2}}{\lambda_{x}-\lambda_{y}}$
D $\lambda_{y}-\lambda_{x}$

Solution

$\frac{h}{\lambda_{x}}-\frac{h}{\lambda_{y}}=\frac{h}{\lambda}$
$\frac{1}{\lambda}=\frac{\lambda_{y}-\lambda_{x}}{\lambda_{x} \lambda_{y}}$
$\frac{\lambda_{x} \lambda_{y}}{\lambda_{y}-\lambda_{x}}$ or $\frac{\lambda_{x} \lambda_{y}}{\lambda_{x}-\lambda_{y}}$
\#1611973
Topic: Electric Charge

Four charges are arranged on y-axis as shown in figure. then the electric field at point P is proportional to:

A $\frac{1}{d}$
B $\frac{1}{d^{2}}$
C $\frac{1}{d^{4}}$

D

Solution
$E=2 \frac{k q}{\left(d^{2}+d^{2}\right)} \frac{d}{\sqrt{d^{2}+d^{2}}}+\frac{k 2 q}{\left(d^{2}+4 d^{2}\right)} \frac{2 d}{\sqrt{d^{2}+4 d^{2}}}$
$\frac{k q d}{d^{2} d}\left[\frac{2}{2 \sqrt{2}}+\frac{8}{5 \sqrt{5}}\right]$
$=\frac{k q}{d^{2}}\left[\frac{1}{\sqrt{2}}+\frac{8}{5 \sqrt{5}}\right]$

\#1611980
Topic: Moving Coil Galvanometer
Maximum current that can pass through galvanometer is $0.002 A$ and resistance of galvonameter is $R_{g}=50 \Omega$. find out shunt resistance to convert in into ammeter of range 0.5

A 0.5Ω
B $\quad 0.2 \Omega$

C 0.7Ω

Solution

$R s=\frac{I_{g} R_{g}}{I-I_{g}}=\frac{2 \times 10^{-3} \times 50}{0.5-2 \times 10^{-3}}=\frac{0.1}{0.498}=0.2 \Omega$

\#1611982

Topic: Kinematics of Circular Motion
Mass density of sphere of radius R varies as $\frac{K}{r^{2}}$, where K is constant and r is distance from centre. A particle is moving near surface of s[here along circular path of radius R witl time period T. Then

A $\quad \frac{T^{2}}{R}=$ constant
B $\frac{T}{R}=$ constant
C $\frac{T}{R^{2}}=$ constant
D $\frac{T^{2}}{R^{3}}=$ constant
Solution
$\int_{0}^{R} 0\left(\frac{G}{R^{2}} \frac{K}{r^{2}} 4 \pi r^{2} d t\right) m=m\left(\frac{2 \pi}{T}\right)^{2} \times R$
$\frac{G K 4 \pi}{R^{2}} \times m=m\left(\frac{2 \pi}{T^{2}}\right) \times R$
$\frac{T^{2}}{R^{2}}=$ constant
$\frac{T}{R}=$ constant

\#1611987

Topic: Spherical Mirrors
For position of real object at x_{1} and $x_{2}\left(x_{2}>x_{1}\right)$ magnification is equal to 2 . Find out $\frac{x_{1}}{x_{2}}$. if focal length of converging lens $f=20 \mathrm{~cm}$.

A $\frac{1}{2}$
B $\quad \frac{1}{4}$

C 2

D 4
Solution
$m=\left(\frac{f}{f+u}\right)$
$-2=\frac{20}{20-x_{2}}$
$-10 x_{2}=10$
$x_{2}=20 \mathrm{~cm}$
$m=2=\frac{20}{20-x_{1}}$
$20-x_{1}=10$
$x_{1}=10$
$\frac{x_{1}}{x_{2}}=\frac{10}{20}=\left(\frac{1}{2}\right)$

\#1611993

Topic: Scalars and Vectors
A vector is inclined at $\frac{\pi}{4}$ rad with x-axis \& $\frac{\pi}{3}$ rad with y-axis then find angle of vector with z-axis.
A $\frac{2 \pi}{3} \mathrm{rad}$

B $\quad \frac{5 \pi}{3} \mathrm{rad}$
C $\quad \frac{\pi}{4} \mathrm{rad}$
D $\quad \frac{\pi}{2} \mathrm{rad}$

Solution

$\cos ^{2} \frac{\pi}{4}+\cos ^{2} \frac{\pi}{3}+\cos ^{2} z=1$
$\cos ^{2} z=1-\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$
$\cos z= \pm \frac{1}{2} \Rightarrow z=60^{\circ}, 120^{\circ} \Rightarrow \frac{\pi}{3}$ or $\frac{2 \pi}{3} \mathrm{rad}$

\#1612001

Topic: Energy in a Capacitor
Two capacitor of capacitance ' C ' and ' $n C$ are connected in parallel. A battery of emf ' V is connected across the combination. Now the battery is removed and a dielectric constant K is inserted filling the space between the plates of capacitor of capacitance C. the final potential difference across the system is

A $\frac{n+k}{n+1}$
B $\frac{n+1}{n+k}$
C $\frac{n-1}{n+k} V$
D $\frac{n+1}{n-k} V$
Solution

Total charge on system after battery is removed is $Q=(n+1) C V$ and it remains constant. final situation
$C_{e q}=n C+k c=(n+1) C$
$V=\frac{Q}{C_{e q}}=\frac{(n+1) C V}{(n+k) C}=\frac{n+1}{n+k} V$

\#1612039
Topic: Refraction at Plane Surfaces

An small object is kept at 18 cm from combination of a convex lens and plane mirror to get the image on object itself. Now the space between lens and mirror is filled with liquic of refractive index μL. Now we need to keep the object at 27 cm to get the image on object. Find μL.

A $\frac{4}{3}$
B $\frac{8}{3}$
C $\frac{3}{2}$
D $\frac{7}{3}$
Solution

Power for equivalent mirror $P=2 P_{L}$
Focal length for equivalent mirror $F=-\frac{1}{P}=-\frac{1}{2 P_{L}}=\frac{-1}{2 \times \frac{1}{F_{L}}}=\frac{F_{L}}{2}$

According to question
$2 F=-18$
$\Rightarrow-\frac{2 F_{L}}{2}=-18 \Rightarrow F_{L}=18 \mathrm{~cm}$
$(1.5-1) \frac{2}{R}=\frac{1}{18}$
$R=18 \mathrm{~cm}$
$\frac{1}{F_{L}}=(\mu L-1)\left(\frac{1}{-18}-\frac{1}{\infty}\right)=\frac{\mu_{L}-1}{78}=\frac{1-\mu_{L}}{18}$
$\frac{1}{F_{e q}}=\frac{1}{F_{L}}+\frac{1}{F_{L}}=\frac{1}{18}+\frac{1-\mu_{L}}{18}=\frac{2-\mu_{L}}{18}$

According to question
$P=P_{\text {equivalent mirror }}=2 P_{L}+2 P_{L}$
$=2\left(\frac{1}{F_{L}}+\frac{1}{F_{L}}\right)=2\left[\frac{2-\mu_{L}}{18}\right]=\frac{\mu_{L}}{9}$
$f_{e q}$ for mirror $=\frac{-1}{P}=\frac{9}{\mu_{L}-2}=F^{\prime}$

According to question
$2 F^{\prime}-27$
$\Rightarrow \frac{2 \times 9}{\mu_{L}-2}=-27$
$\Rightarrow \mu_{L}=\frac{4}{3}$

$\mu \mathrm{L}$

\#1612052

Topic: Speed and Velocity
The position of particles is given as $x=a t+b t^{2}-c t^{3}$ find out velocity when acceleration is zero

A $v=a+\frac{b^{2}}{3 C}$
B $\quad v=a-\frac{b^{2}}{3 c}$
C $\quad v=2 a-\frac{b^{2}}{3 c}$
D None of these
Solution
$\frac{d x}{d t}=a+2 b t-3 c t^{2}$
$\frac{d^{2} x}{d t^{2}}=0+2 b-6 c t=0$
$t=\frac{b}{3 c}$
$V=a+2 b\left(\frac{b}{3 c}\right)-3 c\left(\frac{b}{3 c}\right)^{2}$
$V=a+\frac{2 b^{2}}{3 c}-\frac{b^{2}}{3 c}=a+\frac{b^{2}}{3 c}$
$V=a+\frac{b^{2}}{3 c}$

\#1612064

Topic: Inelastic Collisions
Two bodies of masses m and $2 m$ are moving in same direction with speed $2 v$ and v respectively, just after collision body of mass $2 m$ splits in two equal parts which move at 45 from initial direction of motion. Find out speed of one part after collision

A $2 \sqrt{2} v$
B $\sqrt{2} v$

C $\quad 2 v$

D None of these

\#1612073

Topic: Heat, Internal Energy and Work
During a process ideal gas expands to compress the spring such that $10 K J$ energy is stored in spring and $2 K J$ heat is released from gas to surrounding. Find the change in internal energy of gas

A 12 KJ

B $\quad 10 \mathrm{KJ}$

C $8 K J$

D 6 KJ

Solution

Here, $W=10 \mathrm{KJ}$
$\theta=-2 K J$
$\Delta U=\theta-w$
$=10-(-2)$
$=12 \mathrm{KJ}$

\#1612084

Topic: Heat, Internal Energy and Work
A block of mass 500 g and specific heat $400 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ is attached with a spring of spring constant $800 \mathrm{~N} / \mathrm{m}$. Now block is dipped in water of mass 1 kg and specific heat $4184 \mathrm{~J} / \mathrm{kg}$ K. Now the spring is elongated by 2 m and released. Find rise in temperature of water and block system when block finally comes to rest.

A $\quad 7.64 \times 10^{-4} K$

B $\quad 3.64 \times 10^{-3 K}$

C $3.64 \times 10^{-5 K}$

D $\quad 3.64 \times 10^{-6} K$

Solution

$\frac{1}{2} k A^{2}=m_{1} s_{1} \Delta T+m_{2} s_{2} \Delta T$
$\frac{1}{2} \times 800 \times\left(\frac{2}{100}\right)^{2}=\frac{1}{2} \times 400 \times \Delta T+4184 \times \Delta T$
$\Delta T=400 \times\left(\frac{2}{100}\right)^{2}=3.64 \times 10^{-5} \mathrm{~K}$ $200+4184$

\#1612093

Topic: Atomic Spectra and Spectral Series
If He^{+}ion is in its first excited state that its ionization energy is:

A $\quad 13.6 \mathrm{eV}$
B $\quad 48.8 \mathrm{eV}$

C $\quad 54.4 \mathrm{eV}$
D -13.6 eV
Solution
$E_{n}=-13.6 \frac{z^{2}}{n^{2}}$
in first excited state for H_{e}^{+}
$E=-13.6 \times \frac{(2)^{2}}{(2)^{2}}=13.6 \mathrm{eV}$
\therefore Ionization energy is 13.6 eV

\#1612109

Topic: Resistance and Resistivity
If in conductor, number density of electrons is $8.5 \times 10^{28} / \mathrm{m}^{3}$ average relaxation time 25 femtosecond mass of electron being $9.1 \times 10^{31} \mathrm{~kg}$, the resistivity would be of the order.

A $\quad 10^{-5}$
B $\quad 10^{-6}$
C $\quad 10^{-7}$
D $\quad 10^{-8}$
Solution
$\sigma=\frac{n e^{2} C}{m_{e}} \Rightarrow e=\frac{m_{e}}{n e^{2} C}=\frac{9.1 \times 10^{-31}}{\left.8.5 \times 10^{28 \times(1.6 \times-19}\right)^{2} \times 25 \times 10^{-15}}$
$=\frac{9.1}{8.5 \times(1.6)^{2} \times 25} \times 10^{-6}$
$e=1.6 \times 10^{-8}$
$e \simeq 10^{-8}$

\#1612116

Topic: Solenoid and Toroid
If current is solenoid is $i_{1}=\alpha t_{e}^{-\beta t}$. Which of the following is correct graph between induced current and time (α and β are positive)

B

C

D

Solution
$i_{\text {ind }} \alpha \frac{d i}{d t}=\frac{d}{d t}\left(\alpha t_{\left.e^{-\beta t}\right)}\right.$
$=\alpha e^{-\beta t}+\alpha t e^{-\beta t}(-\beta)$
$=\alpha_{e}-\beta t(1-\beta t)$
Check value at $t=0$

