\#1612007
Topic: Special Functions
Let $f(x)$ satisfy the relation $f(x+y)=f(x)$.f(y) for all $x, y \in N$ and $\left.f(1)=2, \sum f a+k\right)=16\left(2^{20}-1\right)$ then value of a is?

A 1

B 2
C 3
D 4

Sthnttion

$f(1)=2 \& f(x+y)=f(x) . f(y) \forall x, y, \in N$.
Now, $f(n)=f(n-1+1)=f(n-1) . f(1)$
$=f(n-2) \cdot f^{2}(1)$
$=f(n-3) \cdot f^{3}(1)$
$=(f 1))^{n}$
Hence $f(n)=2^{n} \forall n \in N$
Given $f(a+1)+f(a+2)+\ldots \ldots+f(a+20)$
$=2^{a+1}+2^{a+2}+\ldots+2^{a+20}$
$=2^{a+1}\left(2^{20}-1\right) \Rightarrow a=3$.

\#1612066

Topic: Properties of Definite Integral
$\int^{\frac{\pi}{2}} \frac{\sin ^{3} x}{\sin x+\cos x} d x$ is equal to?

A $\frac{\pi}{4}-\frac{1}{4}$
B $\frac{\pi}{4}+\frac{1}{4}$
C $\frac{\pi}{4}+\frac{1}{2}$
D $\frac{\pi}{4}-\frac{1}{2}$

shapution

$I=\int_{0}^{\pi / 2} \frac{\sin ^{3} x}{\sin x+\cos x} d x$
$I=\int_{0}^{\pi / 4} \frac{\sin ^{3} x+\cos ^{3} x}{\sin x+\cos x} d x$
$I=\int_{0}^{\pi / 4}(1-\sin x \cos x) d x$
$I=\frac{\pi}{4}+\frac{1}{4}(\cos 2 x) \frac{\pi}{4}$
$I=\frac{\pi}{4}-\frac{1}{4}$.

\#1612071

Topic: Trigonometric Ratios of Any Angle
$\cos ^{2} 10^{\circ}+\cos ^{2} 50^{\circ}-\cos 10^{\circ} \cos 50^{\circ}$ is equal to?

A $\frac{3}{2}$
B $\frac{3}{4}$
C $\quad \frac{3}{2}\left(\cos 20^{\circ}+1\right)$

D $\frac{3}{4}\left(\cos 20^{\circ}+1\right)$

Sknhtion

$\cos ^{2} 10^{\circ}+\cos ^{2} 50^{\circ}-\cos 10^{\circ} \cos 50^{\circ}$
$=\frac{1}{2}\left\{1+\cos 20^{\circ}+1+\cos 100^{\circ}-\cos 60^{\circ}-\cos 40^{\circ}\right\}$
$=\frac{1}{2}\left[\frac{3}{2}+2 \cos 60^{\circ} \cos 40^{\circ}-\cos 40^{\circ}\right]=\frac{1}{2} \times \frac{3}{2}=\frac{3}{4}$.

\#1612077

Topic: Combination
A committee of 11 person is to be made from 8 male and 5 female where m is number of ways of selecting at least 6 male and n is the number of ways of selecting at least 3 female, then?

A $m=n=78$

B $\quad m=n=68$

C $m+n=68$

D $m-n=8$

Fraption
Atleast 6 men

M	W
6	5
7	4
8	3

So, $m={ }^{8} C_{6} \cdot{ }^{5} C_{5}+{ }^{8} C_{7} \cdot{ }^{5} C_{4}+{ }^{8} C_{8} \cdot{ }^{5} C_{3}$
$=28+40+10=78$

M	W
8	3
7	4
6	5

So $n={ }^{5} C_{3} \times{ }^{8} C_{8}+{ }^{5} C_{4} \cdot{ }^{8} C_{7}+{ }^{5} C_{5} \cdot{ }_{6}^{C}=10+40+28=78$.

\#1612090

Topic: Integration by Substitution
$\int_{\sec } \frac{2}{3} x \operatorname{cose} C_{3}^{\frac{4}{3}} x d x$ is equal to?
A $\quad 3 \tan \frac{1}{3} x+c$
B $\quad-3 \cot \frac{1}{3} x+c$
C $\quad-3_{\tan } \frac{1}{3} x+c$
D $\frac{3}{4} \cot ^{-\frac{1}{3}} x+c$

Sthntrtion

$I=\int(\sec x)^{2 / 3} \cdot(\operatorname{cosec} x)^{4 / 3} d x$
$=\int \frac{1}{(\sin x)^{4 / 3} \cdot(\cos x)^{2 / 3}} d x$
Multiplying numerator and denominator by $\operatorname{cosec}^{2} x$, we get
$I=\int \frac{\operatorname{cosec}^{2} x}{(\cot x)^{2 / 3}} d x$
Let $\cot x=t^{3}$
$\Rightarrow \operatorname{cose}^{2} x d x=-3 t^{2} d t$
Hence $I=-3 \int \frac{t^{2} d t}{t^{2}}=-3 t+C=-3(\cot x)^{1 / 3}+C$.

\#1612101

Topic: Normal
If $y=m x+7 \sqrt{3}$ is normal to $\frac{x^{2}}{18}-\frac{y^{2}}{24}=1$ then the value of m can be?
$\begin{array}{ll}\text { A } & 2 \\ \sqrt{5}\end{array}$
B $\frac{4}{\sqrt{5}}$
C $\frac{1}{\sqrt{5}}$
D $\frac{2}{\sqrt{3}}$

Srapution

$7 \sqrt{3}=\frac{42 m}{\sqrt{24-18 m^{2}}} \Rightarrow \sqrt{3}=\frac{\sqrt{6} m}{\sqrt{4-3 m^{2}}} \Rightarrow 4-3 m^{2}=2 m^{2}$
$m=\frac{2}{\sqrt{5}}$.

\#1612114

Topic: Inverse of a Matrix
$\operatorname{Let}\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{cc}1 & n-1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 78 \\ 0 & 1\end{array}\right]$
If $A=\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]$ then $A^{-1}=$?

A $\quad\left[\begin{array}{lr}1 & 12 \\ 0 & 1\end{array}\right]$
B $\left[\begin{array}{cc}1 & -13 \\ 0 & 1\end{array}\right]$
C $\quad\left[\begin{array}{cc}1 & -12 \\ 0 & 1\end{array}\right]$
D $\quad\left[\begin{array}{cc}1 & 0 \\ -13 & 1\end{array}\right]$

Blinhtion
$\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{cc}1 & n-1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 78 \\ 0 & 1\end{array}\right]$
$\Rightarrow \frac{n(n-1)}{2}=78 \Rightarrow n=13$
$A=\left[\begin{array}{ll}1 & 13 \\ 0 & 1\end{array}\right]$
so $A^{-1}=\left[\begin{array}{cc}1 & -13 \\ 0 & 1\end{array}\right]$

\#1612139

Topic: Multiplication Theorem
Probability of hitting a target independently of 4 persons are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{8}$. Then the probability that target is hit, is?
A $\frac{1}{192}$
B $\frac{5}{192}$
C $\frac{25}{32}$
D $\frac{7}{32}$

Sknhtion
$P(H)=1-P($ Not Hitting $)$
$=1-\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{7}{8}=\frac{25}{32}$.

\#1612142

Topic: Trigonometric Equations
Let $\theta \in[-2 \pi, 2 \pi]$ and $2 \cos ^{2} \theta+3 \sin \theta=0$ then sum of all solutions is?

A 2π

B 3π

C π

D $\frac{\pi}{3}$

Srapetion

$2 \cos ^{2} \theta+3 \sin \theta=0$
$\Rightarrow 2 \sin ^{2} \theta-3 \sin \theta-2=0$
$\Rightarrow(\sin \theta-2)(2 \sin \theta+1)=0$
$\Rightarrow \sin \theta=-\frac{1}{2}$
$\Rightarrow \theta=-\frac{\pi}{6},-\frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
Hence sum $=2 \pi$.

\#1612145

Topic: Variance and Standard Deviation
Standard deviation of four observations $-1,0,1$ and k is $\sqrt{5}$ then k will be?

A $2 \sqrt{6}$
B 1

C 2
D $\sqrt{6}$

Blinhttion
$\sigma^{2}=\frac{\sum x_{i}^{2}}{n}-\left(\frac{\sum x_{i}}{n}\right)^{2}$
$\Rightarrow 5=\frac{1+0+1+k^{2}}{4}-\left(\frac{-1+0+1+k}{4}\right)^{2}$
$\Rightarrow 5=\frac{k^{2}+2}{4}=\frac{k^{2}}{16}$
$\Rightarrow 80=4 k^{2}+8-k^{2}$
$\Rightarrow 72=3 k^{2}$
$\Rightarrow k=2 \sqrt{6}$.
\#1612149
Topic: Continuity of a Function
Let $f(x)=\begin{array}{cc}\frac{\sqrt{2} \cos x-1}{\cot x-1} & x \neq \frac{\pi}{4} \\ k & x=\frac{\pi}{4}\end{array}$ Find k for which $f(x)$ is continuous.

A $-\frac{1}{2}$

B $\quad \frac{1}{3}$
C $\frac{1}{2}$
D 1

Shatition
Since $f(x)$ is continuous at $x=\pi / 4$
$\lim _{x \rightarrow \frac{\pi}{4}} f(x)=f\left(\frac{\pi}{4}\right) \Rightarrow k=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sqrt{2} \cos x-1}{\cot x-1}$
$k=\lim _{x \rightarrow \frac{\pi}{4}} \frac{-\sqrt{2} \sin x}{\operatorname{cosec}^{2} x}=\frac{1}{2}$.
\#1612151
Topic: Bernoulli's Differential Equation
Let $y(x)$ satisfying the differential equation $x \frac{d y}{d x}+2 y=x^{2}$, given $y(1)=1$ then $y(x)=$?

A $\frac{x^{2}}{4}-\frac{3}{4 x^{2}}$
B $\quad \frac{x^{3}}{4}+\frac{3}{4 x^{2}}$
C $\frac{x^{2}}{4}+\frac{3}{4 x}$
D $\frac{x^{2}}{4}+\frac{3}{4 x^{2}}$

Sknhtion
$\frac{x d y}{d x}+2 y=x^{2}$
$\Rightarrow \frac{d y}{d x}+\frac{2 y}{x}=x$
I.F. $=e^{\int \frac{2}{x} d x=x^{2}}$
$y \cdot x^{2}=\int x^{3} d x$
$y x^{2}=\frac{x^{4}}{4}+c$
$1=\frac{1}{4}+C$
$\Rightarrow C=\frac{3}{4}$
$y=\frac{x^{2}}{4}+\frac{3}{4 x^{2}}$.

\#1612154

Topic: Continuity and Differentiability
Let $f(x)=15-|x-10|$ and $g(x)=f(f(x)$ then $g(x)$ is non differentiable is?

A $\{5,10,15\}$
B $\{5,10,15,20\}$

C $\{10\}$

D
$\{5,15\}$

Shintution

$g(x)=f(15-|x-10|)$
$=15-|15-|x-10|-10|=15-|5-|x-10||$
$= \begin{cases}15-|x-5| & x<10 \\ 15-|15-x| & 10<x\end{cases}$
$10+x \quad x<5$
$\left\{\begin{array}{cc}20-x & 5<x<10 \\ x & 10<x<15 \\ 30-x & 15<x\end{array}\right.$
$30-x \quad 15<x$
not differentiable at 5, 10, 15 .

\#1612166

Topic: Area of Bounded Regions
Find area bounded by the curves $x^{2} \leq y \leq x+2$.

A $\frac{11}{2}$
B $\quad \frac{7}{2}$
C $\frac{9}{2}$
D $\frac{5}{2}$

Blinitation

$$
\begin{aligned}
& x^{2} \leq y \leq x+2 \\
& x^{2}=x+2 \\
& \Rightarrow x=-1 \text { or } 2
\end{aligned}
$$

Hence required area $=\int_{-1}^{2}\left(x+2-x^{2}\right) d x$
$=\frac{x^{2}}{2}+2 x-\left.\frac{x^{3}}{3}\right|_{-1} ^{2}=\left(2+4-\frac{8}{3}\right)-\left(\frac{1}{2}-2+\frac{1}{3}\right)=\frac{10}{3}+\frac{7}{6}=\frac{27}{6}=\frac{9}{2}$.

\#1612167

Topic: Multinomial Expansion for Any Real Index
In the expansion of $\left(\frac{2}{x}+x^{\log _{8}}\right)^{6}$ if $T_{4}=20 \times 8^{7}$ then value of x is?

A $8 \frac{1}{2}$
B 8^{2}
C 8^{3}
D $\quad 8^{4}$

Sknhtion
$\left(\frac{2}{x}+x^{\log _{8}}\right)^{6}$
$T_{4}={ }^{6} C_{3} \cdot\left(\frac{2}{x}\right)^{3} \cdot\left(x^{\log _{8} x}\right)^{3}=20 \times 8^{7}$
$\Rightarrow \frac{2}{x} \cdot x^{\log _{8} x}=2^{7} \Rightarrow \frac{x^{\log _{8} x}}{x}=2^{6}=8^{2}$
Taking logarithms on both sides to the base 8 , we get
$\left(\log _{8} x\right)^{2}=2+\left(\log _{8} x\right)$
$\Rightarrow \log _{8} x=2$ or -1
$\Rightarrow x=8^{2}$ or $\frac{1}{8}$.

\#1612169

Topic: Roots and Coefficients
If one root of the quadratic equation $x^{2}+p x+q=0$ is $2-\sqrt{3}$; where $p, q \in Q$. Then which of the following is true?

A $p^{2}-4 q+12=0$
B $p^{2}-4 q-12=0$
C $\quad q^{2}-4 p+12=0$
D $q^{2}-4 p-12=0$

Blinhtion

Since $p, q \in Q$
\Rightarrow other root is $2+\sqrt{3}$
Hence $p=4$ and $q=1$
Hence $p^{2}-4 q-12=0$.

\#1612172

Topic: Functions
Let the function $f(x)$ defined on $f: R-\{-1,1\} \rightarrow A$ and $f(x)=\frac{x^{2}}{1-x^{2}}$. Find A such that $f(x)$ is surjective.

A $\quad R-[-1,0)$
B $\quad R-[-1,1)$
C $\quad R-[-1,2)$
D $\quad R-[0,1)$

Skuhttion

$f(x)=\frac{x^{2}}{1-x^{2}}=y(2 a y)$
$\Rightarrow x^{2} y-y x^{2} \Rightarrow x^{2}=\frac{y}{1+y} \geq 0$
$\Rightarrow y \in(-\infty,-1) \cup[0, \infty]$
Hence set A should be $R-[-1,0]$.

\#1612176

Topic: Determinants
If α, β are the roots of $x^{2}+x+1=0$ then $\left|\begin{array}{ccc}y+1 & \beta & \alpha \\ \beta & y+\alpha & 1 \\ \alpha & 1 & y+\beta\end{array}\right|=$?

A $\quad y^{2}-1$
B $\quad y\left(y^{2}-1\right)$

C $y^{2}-y$
D y^{3}

Skintution
$\Rightarrow \alpha+\beta-1 \& \alpha \beta=1$
Now $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$ gives
$\left|\begin{array}{ccc}y & y & y \\ \beta & y+\alpha & 1 \\ \alpha & 1 & y+\beta\end{array}\right|$
$c_{2} \rightarrow c_{2}-c_{1}, c_{3} \rightarrow c_{3}-c_{1}$ gives
$\begin{array}{lll}y & 0 & 0\end{array}$
$\left|\begin{array}{ccc}\beta & y+\alpha+\beta & 1-\beta \\ \alpha & 1-\alpha & y+\beta-\alpha\end{array}\right|=\mathscr{Y}\left\{\left\{y^{2}-(\alpha-\beta)^{2}\right\}-(\uparrow-\alpha)(1-\beta)\right\}$
$\Rightarrow \nu\left[y^{2}-\left((\alpha+\beta)^{2}-4 \alpha \beta\right)-3\right] \Rightarrow \lambda\left[y^{2}+3-3\right]=y^{3}$.
$x^{2}+x+1=0<{ }_{\beta}^{\alpha}$

\#1612178

Topic: Equation of Line in Parametric Form
If a line is passing through $P(2,3)$ which intersects the line $x+y=7$ at a distance of four units from P. Then the slope of line is?
A $\frac{1-\sqrt{7}}{1+\sqrt{7}}$
B $\quad \frac{\sqrt{7}-1}{\sqrt{7}+1}$
C $\frac{1-\sqrt{5}}{1+\sqrt{5}}$
D $\frac{\sqrt{5}-1}{\sqrt{5}+1}$

Ehiontion

$|\tan \theta|=\frac{1}{\sqrt{7}}=\left|\frac{m-1}{1+m}\right|$
taking $+\operatorname{sign} 1+m=m \sqrt{7}-\sqrt{7} \Rightarrow m=\frac{\sqrt{7}+1}{\sqrt{7}-1}$
taking $-\operatorname{sign} 1+m=\sqrt{\overline{7}}-\sqrt{7} m \Rightarrow m=\frac{\sqrt{7}-1}{\sqrt{7}+1}$

\#1612179

Topic: Tangent and Secant
Find the locus of mid-point of the portion of tangent intercepted between coordinate axes to the circle $x^{2}+y^{2}=1$.

A $x^{2}+y^{2}-4 x^{2} y^{2}=0$
B $\quad x^{2}+y^{2}-2 x y=0$
C $\quad x^{2}+y^{2}-2 x^{2} y^{2}=0$
D $x^{2}+y^{2}-16 x^{2} y^{2}=0$

Sknhtion

Let equation of tangent to the given circle be $x \cos \theta+y \sin \theta=1$
The line meets x-axis at $(\sec \theta, 0) \& y$-axis at $(0, \operatorname{cosec} \theta)$. If $P(h, k)$ is the mid-point of this segment.
$\Rightarrow 2 h=\sec \theta \& 2 k=\operatorname{cosec} \theta$
$\Rightarrow \frac{1}{x^{2}}+\frac{1}{y^{2}}=4$
$\Rightarrow x^{2}+y^{2}-4 x^{2} y^{2}=0$.

\#1612180

Topic: Arithmetic Progression
Let $a_{1}, a_{2}, \ldots \ldots a_{50}$ are non constant terms of an A.P. and sum of n terms is given by $S_{n}=50 n+(n)(n-7) \frac{A}{2}$, then ordered pair $\left(d, a_{50}\right)$ is?(where d is the common difference)

A $(A, 45 A)$
B $(A, 50+46 A)$
C $(2 A, 46 A)$
D $(2 A, 50+49 A)$

Frphetion

$S_{n}=50 n+(n)(n-7) \frac{A}{2}$
$a_{n}=S_{n}-S_{n-1}=(n-4) A+50$
$\Rightarrow d=A$
$a_{50}=46 A+50$.

\#1612181

Topic: Chords of Parabola
One end point of a focal chord of a parabola $y^{2}=16 x$ is $(1,4)$. The length of focal chord is?

A 24
B 25
C 20

D 22

Slantion
Slope $\frac{4-0}{1-4}=\frac{-4}{3}=\tan \alpha$
$L=4 \operatorname{acosec}^{2} \alpha=16 \times \frac{25}{16}=25$.

\#1612182

Topic: Truth Tables
Find the negation of $p u \sim p \wedge q)$.

A $\sim p \wedge \sim q$
B $\quad \sim p \vee \sim q$

C $p \sim q$
D $p \wedge q$

Slantation
$p \vee(\sim p \wedge q) \equiv(p \vee \sim p) \wedge(p \vee q) \equiv p \vee q$
Hence $\sim(p \vee q) \equiv(\sim p \wedge \sim q)$.

\#1612183

Topic: Applications on Geometrical Figures
A curve $f(x)=x^{3}+a x-b$ pass through $P(1,-5)$ and tangent to $f(x)$ at point P is perpendicular to $x-y+5=0$ then which of the following point will lie on curve?

A $(2,-2)$

B $(2,-1)$

C $(2,-1)$
D $(-2,2)$

Sluhtion
$f(x)=x^{3}+a x-b$
It passes through $(1,-5) \& f^{\prime}(1)=-1$
Hence $-5=1+a-b \Rightarrow a-b=-6$
$f^{\prime}(x)=3 x^{2}+a \Rightarrow-1=3+a \Rightarrow a=-4$ Hence $b=2$
So, $f(x)=x^{3}-4 x-2 \Rightarrow(2,-2)$ lies on it.

\#1612184

Topic: Plane
A plane passes through the point $(0,-1,0)$ and $(0,0,1)$ and makes an angle of $\frac{\pi}{4}$ with the plane $y-z=0$ then the point which satisfies the desired plane is?

A $(\sqrt{2},-1,4)$
B $(\sqrt{2}, 1,2)$
C $(\sqrt{2}, 1,4)$
D $(\sqrt{2}, 2,4)$

Srantution
$a x+b y+c z=1,-b=1, c=1$
$a x-y+z=1$
$\frac{1}{\sqrt{2}}=\cos \frac{\pi}{4}=\frac{-1-1}{\sqrt{2} \sqrt{a^{2}+2}}$
$\Rightarrow a^{2}+2=4 \Rightarrow a=-\sqrt{2}$
\Rightarrow Plane is $-\sqrt{2} x-y+z=1$
Clearly ($\sqrt{2}, 1,4$) satisfy the plane.

\#1612185

Topic: Maxima and Minima
Let $f(x)$ be a non-zero polynomial of degree 4. Extreme points of $f(x)$ are $0,-1$, 1. If $f(k)=f(0)$ then?

A
k has one rational \& two irrational roots
B k has four rational roots
C k has four irrational roots

D k has three irrational roots

shantution

Let $f^{\prime}(x)=\lambda x\left(x^{2}-1\right) \Rightarrow f(x)=\lambda\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right)+C$
Now $f(0)=f(k) \Rightarrow \frac{k^{4}}{4}-\frac{k^{2}}{2}=0 \Rightarrow k=0$ or $\pm \sqrt{2}$
Hence (1).

\#1612186

Topic: Plane

Consider a plane $x+2 y+3 z=15$ and a line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-2}{4}$ then find the distance of origin from point of intersection of line and plane.

A $\frac{1}{2}$
B $\frac{9}{2}$
C $\frac{5}{2}$
D 4

Stunttion

Let $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-2}{4}=\lambda \Rightarrow x=2 \lambda+1, y=3 \lambda-1, z=4 \lambda+2$
Now substitution in $x+2 y+3 z=15$
$\Rightarrow(2 \lambda+1)+2(3 \lambda-1)+3(4 \lambda+2)=15$
$\Rightarrow 2 \lambda+1+6 \lambda-2+12 \lambda+6=15 \Rightarrow 20 \lambda+5=15 \Rightarrow \lambda=\frac{1}{2}$
Hence point of intersection is (2, $\frac{1}{2}, 4$)
Hence distance from origin is $\sqrt{4+\frac{1}{4}+16}=\sqrt{\frac{81}{4}}=\frac{9}{2}$.

\#1612187

Topic: Basic Geometry in Argand Plane
If $S=\left\{\frac{\alpha+i}{\alpha-i} ; \alpha \in \dot{R}\right\}$ then the S lies on?

A \quad A circle with radius $=\sqrt{2}$

B \quad A straight line with slope $=-1$

C A straight line with slope $=1$

D A circle with radius $=1$

Sraptution
$x+i y=\frac{\left(\alpha+\eta^{2}\right.}{\alpha^{2}+1}$
$=\frac{a^{2}-1+2 a i}{a^{2}+1}$
$x=\frac{a^{2}-1}{a^{2}+1} \& y=\frac{2 \alpha}{a^{2}+1}$
$x^{2}+y^{2}=\frac{\left(\alpha^{2}-1\right)^{2}+4 \alpha^{2}}{\left(\alpha^{2}+1\right)^{2}}$
$x^{2}+y^{2}=1$.

\#1612188

Topic: Applications of Vector Product
Let $\vec{\alpha}=3 \hat{i}+\hat{j}, \vec{\beta}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{\beta}=\overrightarrow{\beta_{1}}-\overrightarrow{\beta_{2}}$, such that $\overrightarrow{\beta_{1}}$ is parallel to $\vec{\alpha}$ and $\overrightarrow{\beta_{2}}$ is perpendicular to $\vec{\alpha}$ Find $\overrightarrow{\beta_{1}} \times \overrightarrow{\beta_{2}}$

A $\quad \frac{1}{2}(3 \hat{i}-9 \hat{j}+8 \hat{k})$
B $\frac{1}{2}(\hat{i}-3 \hat{j}+4 \hat{k})$
C $\frac{1}{2}(-3 \hat{i}+9 \hat{j}+10 \hat{k})$
D $\frac{3}{2}(3 \hat{i}+9 \hat{j}+10 \hat{k})$

Shintution

$\overrightarrow{\beta_{1}}=\frac{\vec{\alpha} \cdot \vec{\beta}}{|\vec{\alpha}|^{2}} \vec{\alpha}=\frac{5}{10} \stackrel{\rightharpoonup}{\alpha}=\frac{\vec{\alpha}}{2}=\frac{3}{2} \hat{i}+\frac{1}{2} \hat{j}$
$\overrightarrow{\beta_{2}}=\vec{\beta}_{1}-\vec{\beta}=\left(-\frac{1}{2} \hat{i}+\frac{3}{2} \hat{j}-3 \hat{k}\right)$
$\overrightarrow{\beta_{1}} \times \overrightarrow{\beta_{2}}=\frac{1}{2}(-3 \hat{i}+9 \hat{j}+10 \hat{k})$.

