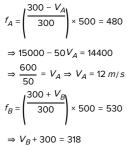

#1612238

Topic: Circuit Instruments

If the reading of the ideal voltmeter shown in the circuit is 2V the internal resistance of the two identical cells is


#1612240

Topic: Speed of Sound

A stationary source of sound is emitting sound of frequency 500Hz. Two observers A and B lying on the same line as the source, observe frequencies 480Hz and 530Hz

respectively. The velocity of A and B respectively are (in m/s), speed of sound = 300 m/s.

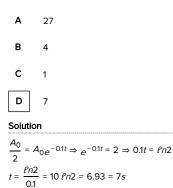
#1612245

Topic: Acceleration due to Gravity

The height above the surface of earth at which acceleration due to gravity is half the acceleration due to gravity at surface of earth is ($R = 6.4 \times 10^6 m$)

- **B** $2.6 \times 10^{6}m$ **C** $12.8 \times 10^{6}m$
- **D** 19.2 × 10⁶m

Solution


$\frac{g}{2} = \frac{Gm}{(R+h)^2}$	
$g = \frac{Gm}{R^2}$	
$\frac{1}{2} = \frac{R^2}{(R+h)^2}$	
$R + h = \sqrt{2}R$	
<i>R</i> = 0.41 <i>R</i>	

 $= 0.41 \times 6.4 \times 10^{6} m = 2.6 \times 10^{6} m$

#1612250

Topic: Free, Forced and Damped Oscillations

Equation of motion for a particle performing damped harmonic oscillation is given as $x = e^{-1t} cos(10\pi t + \phi)$. The times when amplitude will half of the initial is :

#1612253

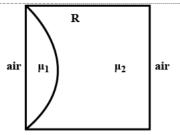
Topic: Change in Nucleus due to Radioactive decay

A sample containing same number of two nuclei A and B start decaying. The decay constant of A and B are 10 J and J. The time after which	$\frac{N_A}{N_B}$ becomes	$\frac{1}{e}$ is
$\begin{bmatrix} \mathbf{A} \end{bmatrix} \frac{1}{9\lambda}$		
$B \qquad \frac{1}{18\lambda}$		
$c = \frac{2}{9\lambda}$		
D $\frac{3}{19\lambda}$		
Solution		
$\frac{N_A}{N_B} = \frac{N_0 e^{-10\lambda t}}{N_0 e^{-\lambda t}} = \frac{1}{e}$		
$\Rightarrow e^{-9\lambda t} = e^{-1}$		
$\Rightarrow 9\lambda t = 1$		
$\Rightarrow t = \frac{1}{9\lambda}$		

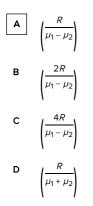
#1612262

Topic: Drift of electrons

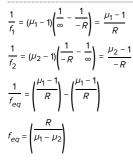
In conducting wire of radius 5 mm, resistivity $\rho = 1.1 \times 10^{-8}\Omega/m$ and current of 5A is flowing. Drift velocity of free electron is $1.1 \times 10^{-3} m/s$ find out mobility of free electron.


- A 1.57 m² volt/sec
- B 1.25 m² volt/sec
- c 1.2 m² volt/sec
- D 2 m² volt/sec

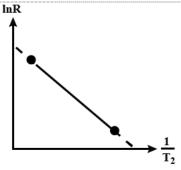
Solution


 $\begin{aligned} V_d &= \mu E = \mu \frac{V}{\rho} \\ V_d &= \frac{\mu \cdot IR}{\rho} \frac{\mu \cdot I_{\rho} \rho}{A \rho} = \frac{\mu \cdot I_{\rho}}{A} \\ \mu &= \frac{V_{ct} \cdot A}{I_{\rho}} = \frac{1.1 \times 10^{-3} \times \lambda \times 25 \times 10^{-6}}{5 \times 1.1 \times 10^{-8}} \\ \mu &= 1.57 \ m^2 \ \text{volt/sec.} \end{aligned}$

#1612277

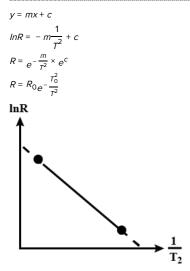

Topic: Combination of Lenses and Mirrors

Find out equivalent focal length of given lens combination



Solution

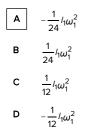
#1612288 Topic: Graphs in Kinematics



The graph shows the variation of $\rho_{\Pi R}$ v/s $\frac{1}{T^2}$, where R is resistance and T is temperature. Then find R as function of T.

- **A** $R = R_{0e} \tau_0^2 / \tau^2$
- **B** $R = R_{0e} \tau^2 / \tau_0^2$
- $\mathbf{C} \qquad R = R_{0e} T^3 / T^0$
- **D** $R = R_{0e} \tau^3 / \tau_0^3$

Solution

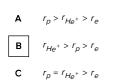


#1612308

Topic: Basics of Moment of Inertia

Two uniform circular rough disc of moment of inertia l_1 and $\frac{l_1}{2}$ are rotating with angular velocity ω_1 and $\frac{\omega_1}{2}$ respectively in same direction. Now one disc is placed the other disc co-axially. The change in kinetic energy of the system is :

toppr


Solution

$$\begin{split} \vec{L}_{I} &= \vec{L}_{f} \\ l_{1}\omega_{1} + \frac{l_{1}}{2} \frac{\omega_{1}}{2} = l_{1}\omega_{f} + \frac{l_{1}}{2}\omega_{t} \\ \frac{5l_{1}\omega_{1}}{4} &= \frac{3}{2}l_{1}\omega_{f}\omega_{f} = \frac{5}{6}\omega_{1} \\ \Delta K. E. &= \left(\frac{1}{2}l_{1}\omega_{f}^{2} + \frac{1}{2}\frac{l_{1}}{2}\omega_{f}^{2}\right) - \left(\frac{1}{2}l_{1}\omega_{1}^{2} + \frac{1}{2}\frac{l_{1}}{2}\left(\frac{\omega_{1}}{2}\right)^{2}\right) \\ &= \frac{1}{2} \cdot \frac{3}{2}l_{1}\frac{25}{36}\omega_{1}^{2} - \frac{1}{2} \cdot \frac{9}{8}l_{1}\omega_{1}^{2} \\ &= \frac{75l_{1}\omega_{1}^{2}}{144} - \frac{9}{8}l_{1}\omega_{1}^{2} \\ &= \frac{75-81}{144}l_{1}\omega_{1}^{2} \\ \Delta K. E = -\frac{1}{24}l_{1}\omega_{1}^{2} \end{split}$$

#1612332

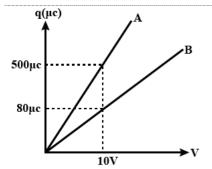
Topic: Lorentz Force

An electron, a proton and a H_e^+ ion projected into a magnetic field with same kinetic energy, with velocities being perpendicular to the magnetic field. The order of the radii of cirlces traced by them is:

Solution

radius of circle is given by

 $r = \frac{mv}{qB} = \frac{p}{qB} = \frac{\sqrt{2mk}}{qB} = \frac{\sqrt{2m}}{qB}\sqrt{k}$


where K is kinetic energy

For poor

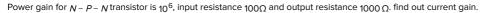
$$\begin{aligned} r_p &= \frac{\sqrt{2m_p}}{eB} \sqrt{k} \\ \text{for electron } r_e &= \frac{\sqrt{2m_e}}{eB} \sqrt{k} \\ \text{for } H_e^+ r_{H_e^+} &= \frac{\sqrt{2 \times 4m_p}}{eB} \sqrt{k} = \frac{\sqrt{2m_p}}{eB} \sqrt{k} \\ \text{Clearly } r_{H_e^+} &> r_p > r_e \end{aligned}$$

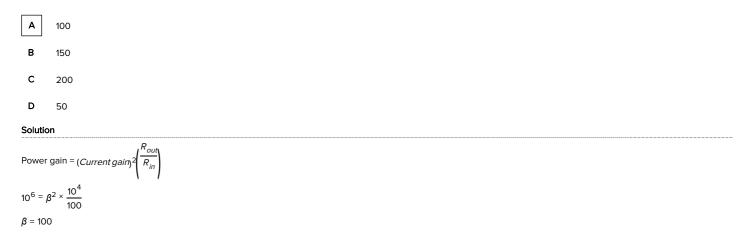
#1612334

Topic: Equivalent Capacitance in series-parallel

Plot A&B represent variation of charge with potential difference across the combination (series and parallel) of two capacitors. Then find the value of capacitance of capacitors.

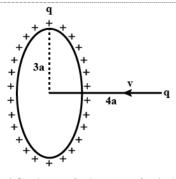
D 25μ*F*, 25μ*F*


Solution


For parallel combination $q = 10(C_1 + C_2)$ $q_1 = 500 \mu C$ $500 = 10(C_1 + C_2)$ $C_1 + C_2 = 50 \mu F...(i)$ For series combination $q_2 = 10 \frac{C_1 C_2}{(C - 2 + C_2)}$ $80 = 10 \frac{C_1 C_2}{50}$ From equation ...(i) $C_1 C_2 = 400...(ii)$ From equation (i) and (ii)

 $C_1 = 10 \mu F \quad C_2 = 40 \mu F$

#1612335


Topic: Transistor

#1612336

Topic: Basics of Projectile Motion

A Circular ring of radius 3_a is uniformly charged with charge q is kept in x - y plane with center at origin. A particle of charge q and mass m is projected from $x = 4_a$ towards origin. Find the minimum speed of projection such that it reaches origin.

$$\sqrt{\frac{q^2}{20\pi\epsilon_0 ma}}$$

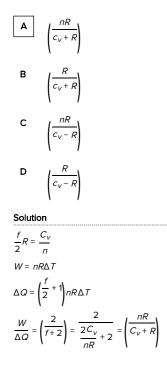
Solution

$$W_{ext} + W_{i.n.c.} = \Delta KE + \Delta U$$

$$0 = \left(0 - \frac{1}{2}mv^{2}\right) + q\left(\frac{kq}{3a} - \frac{Kq}{5a}\right)$$

$$\frac{1}{2}mv^{2} = \frac{2kq^{2}}{15a}$$

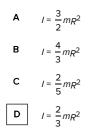
$$v = \sqrt{\frac{4Kq^{2}}{15ma}} = \sqrt{\frac{q^{2}}{15mc_{0}ma}}$$

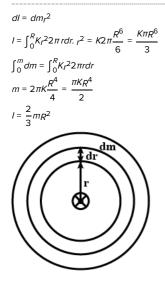

#1612337

Topic: Isobaric, Isochoric, Isothermal Processes

An Ideal gas undergoes an isobaric process. If its heat capacity is C_v at constant volume and number of mole n, then the ratio of work done by gas to heat given to gas when

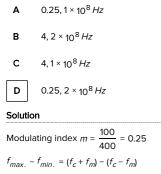
toppr


temperature of gas changes by ΔT is:


#1612338

Topic: Basics of Moment of Inertia

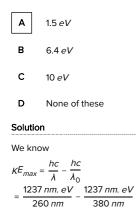
Surface mass density of a disc of mass m and radius R is $\sigma = K/2$. then its moment of inertia w.r.t. axis of rotation passing through centre and perpendicular to the plane of disc


Solution

#1612340

Topic: Amplitude Modulation

A modulating wave of frequency 100 *MHz* and amplitude 100 *V* is superimposed on a carrier wave of frequency 300 *GHz* and amplitude 400 *V*. the value of modulating index and difference between the maximum frequency and minimum frequency of modulated wave are respectively:



$= 2F_M = 2 \times 10^8 Hz$

#1612344

Topic: Maxwell's Equations

The maximum kinetic energy of electron if wavelength of incident electromagnetic wave is 260 nm and cut-off wavelength is 380 nm given hc = 1237 nm - eV is

= 1.5*eV*

#1612346

Topic: Maxwell's Equations

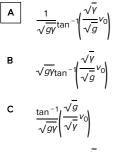
If $\stackrel{\bullet}{E} = E_0 \cos(kz) \cos(\omega t)_i$ then $\stackrel{\bullet}{B}$ for electromagnetic wave is:

A
$$\dot{B} = \frac{E_0}{C}\hat{k}$$

B $\dot{B} = \frac{E_0}{C}\sin(kz)\sin(\omega t)\hat{j}$

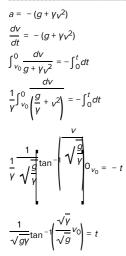
Download other JEE Main Answer Key here: https://www.toppr.com/bytes/jee-main-answer-keys/

C
$$\overset{*}{B} = \frac{E_0}{C} \sin(kz) \cos(\omega t)\hat{j}$$
D
$$\overset{*}{B} = \frac{E_0}{C} \cos(kz) \sin(\omega t)\hat{j}$$


Solution

 $\frac{dE}{dz} = -\frac{dB}{dt}$ If $\frac{\star}{E} = E_0 \cos(kz) \cos(\omega t)$ then $\frac{\star}{B} = \frac{E_0}{C} \sin(kz) \sin(\omega t)$ will satisfy the equation

#1612348


Topic: Basics of Projectile Motion

A particle is projected vertically upwards with speed v_0 . The drag force acting on it given by $f_{drag} = m\gamma_V^2$. the time when it is at maximum height is:

$$\mathbf{D} = \frac{1}{\sqrt{g\gamma}} \tan^{-1} \left(\frac{\sqrt{\gamma}}{\sqrt{g}} \frac{1}{v_0} \right)$$

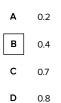
Solution

#1612349

Topic: Transformers

In a step-down transform the turn ratio is 1:2 and output power is 2.2 kW if output current is 10 A then the value of input voltage and input current:

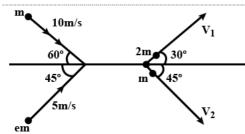
A 100 V, 20 A B 110 V, 10 A C 440 V, 5 A D 440 V, 20 A Solution $P_{out} = V_0/0$ $\Rightarrow 2200 = V_0 \times 10 \Rightarrow V_0 = 220 \text{ volt}$ $\therefore V - i = 2 \times 220 = 440 V(: N_s/N_p = 1/2 = V_0/V_1)$ Also 2200 = 440 × I_i


 $\Rightarrow I_i = 5A$

#1612350 Topic: Viscosity

The depression of mercury in a capillary tube of radius R₁ is observed to be equal to the rise of water in another capillary tube of radius R₂. if the ratio of surface tension of

mercury and water is 7.5, ratio of their density $\frac{\rho_{Hg}}{\rho_{water}}$ = 13.6 and their angle of contact are θ_{Hg} = 135° and θ_{water} = 0° in the respective tubes then R_1/R_2 is:



Solution

 $|h_{Hg}| = |h_{water}|$ $\frac{2S_{Hg}]cos\theta_{Hg}}{\rho_{Hg}R_{Hg}g} = \frac{2S_wcos\theta_w}{\rho_wR_wg}$ $\frac{R_{Hg}}{R_w} = \frac{\rho_w}{\rho_{Hg}}\frac{S_{hg}}{S_w}\frac{cos\theta_{Hg}}{cos\theta_w} = \frac{1}{13.6} \times 7.5 \times \frac{1}{\sqrt{2}}$ $\frac{R_{Hg}}{R_w} = 0.4$

#1612351

Topic: Elastic Collisions in One-Dimension

Two particle of masses m and 2m are colliding elastically as given in figure. If V1 and V2 speed of particle just after collision then

A $V_1 = 11.16 \ m/s, \ V_2 = 6.31 \ m/s$

B
$$V_1 = 10.16 \text{ m/s}, V_2 = 5.31 \text{ m/s}$$

C $V_1 = 9.16 \ m/s, \ V_2 = 6.31 \ m/s$

D $V_1 = 6.31 \, m/s, V_2 = 11.16 \, m/s$

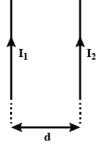
Solution

Using momentum conservation

$$m \times 10\cos 60^{\circ} + 2m \frac{5}{\sqrt{2}} = \frac{mv_2}{\sqrt{2}} + 2mv_1 \frac{\sqrt{3}}{2}$$

$$5\sqrt{2} + 10 = v^2 + \sqrt{6}V_1 \dots (A)$$

In Y-direction


$$2m \frac{5}{\sqrt{2}} - m \frac{10\sqrt{3}}{2} = \frac{2mv_1}{2} - \frac{mv_1}{\sqrt{2}}$$

$$10 - 5\sqrt{6} = \sqrt{2}V_1 - V_2 \dots (B)$$

Using A and B

$$V_1 = 6.31 m/s, V_2 = 11.16 m/s$$

#1612352

Topic: Magnetic field

Two parallel infinite wires separated by distance ${'\it d}'$ carry currents as shown in figure.

The distance from a third infinite wire be kept parallel to wire carrying current l_1 , the wire such that it stays in equilibrium is

• toppr

$$\begin{array}{ccc}
\mathbf{A} & \frac{l_2}{l_2 + l_1} d \text{ or } \frac{l_1}{l_1 + l_2} d \\
\end{array}$$

$$\begin{array}{ccc}
\frac{l_2}{l_2 - l_1} d \text{ or } \frac{l_1}{l_1 - l_2} d \\
\end{array}$$

$$\begin{array}{ccc}
\frac{l_2}{l_1 - l_2} d \text{ or } \frac{l_1}{l_1 - l_2} d \\
\end{array}$$

$$\begin{array}{ccc}
\frac{l_2}{l_2 - l_1} d \text{ or } \frac{l_1}{l_1 - l_2} d \\
\end{array}$$

$$D \qquad \frac{2l_2}{l_2 + l_1} d \text{ or } \frac{l_1}{l_1 - l_2} d$$

Solution

For the case when $l_1 < l_2$

Let the length of the third wire is $\rho(\rho \rightarrow \infty)$

For equilibrium $F_1 = F_2$

$$\Rightarrow \frac{\mu_0 l_1 l}{2\pi x} \ell = \frac{\mu_0 l_2 l}{2\pi (d+x)} \ell \Rightarrow \frac{d+x}{x} = \frac{l_2}{l_1} \Rightarrow \frac{d}{x} = \frac{l_2 - l_1}{l_2} \Rightarrow x = \left(\frac{l_2}{l_2 - l_1}\right) dt$$

For the case when $I_2 < I_1$

 $F_1 = F_2$ $\frac{\mu_0 l_1 l_2}{2\pi x} = \frac{\mu_0 l_2 l_2}{2\pi (x-d)}$ $\Rightarrow \frac{x-d}{x} = \frac{l_2}{l_1}$ $\Rightarrow 1 - \frac{d}{x} = \frac{l_2}{l_1} \Rightarrow \frac{l_1 - l_2}{l_1} = \frac{d}{x}$ $\Rightarrow x = \left(\frac{l_1}{l_1 - l_2}\right)d$ $\therefore \text{ value of x is } \frac{l_2}{l_2 - l_1} \text{ or } \frac{l_1}{l_1 - l_2} d$ $\underbrace{\overset{F_2I}{\textcircled{\bullet}} F_1}_{I_2} \overset{F_1}{\underset{I_1}{\textcircled{\bullet}}} I_1$ $\xrightarrow{F_1}_{x \leftarrow I_2}$

#1612353

 I_1

Topic: Force and Torque

The coordinates of a particle of mass m' as function of time are given by $x = x_0 + a_1 \cos(\omega_1 t)$ and $y = y_0 + a_2 \sin(\omega_2 t)$. The torque on particle about origin at time t = 0 is:

- Α $(ma_1\omega_1^2 x_0)_k^2$
- $(ma_1\omega_1^2x_0^2)\hat{k}$ в
- $(ma_1\omega_1^2y_0)\hat{k}$ С
- D $(ma_1\omega_1^2 x_0 y_0)\hat{k}$

Solution

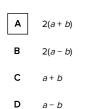
 \rightarrow F₂

 $\dot{r} = (x_0 + a_1 \cos(\omega_1 t))\hat{j} + (y_0 + a_2 \sin(\omega_2 t))\hat{j}$

 $\dot{v} = -a_1 \omega_1 \sin(\omega_1 t) \hat{j} + a_2 \omega_2 \cos(\omega_2 t) \hat{j}$

 $\dot{a} = -a_1\omega_1^2\cos(\omega_1 t)\hat{j} - a_2\omega_2^2\sin(\omega_2 t)\hat{j}$

at $t = 0, \dot{r} = (x_0 + a_1)\hat{i} + y_0\hat{j}$

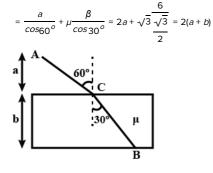

 $\dot{F} = m_a^* = -ma_1\omega_1^2\hat{i}$

 $\vec{T} = \vec{T} \times \vec{F} = (ma_1\omega_1^2 y_0)\hat{k}$

#1612354

Topic: Prism

For path $A \rightarrow B$ optical path is


Solution

 $AC = \frac{a}{\cos 60^{\circ}}; CB = \frac{b}{\cos 30^{\circ}}$

 $\sin 60^o = \mu \sin 30^o$

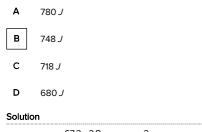
 $\mu = \sqrt{3}$

optical path = $AC + \mu CB$

#1612355

Topic: Introduction to Kinetic Theory

 R_{MS} speed of O_2 molecule is 200 m/s at T = 300 K and P = 3atm. If diameter of molecule is 0.3 nm then collision frequency is:


 $\begin{array}{|c|c|c|c|c|c|} \hline \mathbf{A} & 2.9 \times 10^{7} s^{-1} \\ \hline \mathbf{B} & 2.9 \times 10^{6} s^{-1} \\ \hline \mathbf{C} & 2.9 \times 10^{6} s \\ \hline \mathbf{D} & 2.9 \times 10^{5} \\ \hline \hline \mathbf{Solution} \\ \hline \hline \hline & \text{Collision frequency} = \sqrt{\frac{8kT}{\pi m}} \cdot \frac{\sqrt{2} \pi d^{2} N_{A} P}{RT} \\ = \sqrt{\frac{8}{\pi} \times \frac{25}{3}} \cdot \frac{300}{32} \frac{\sqrt{2} \pi \times 9 \times 10^{-29} \times 6.023 \times 10^{23} \times 10^{5}}{\frac{25}{3} \times 300} = \frac{722.14}{25} \times 10^{6} \\ = 28.8 \times 10^{6} = 2.9 \times 10^{7} s^{-1} \end{array}$

toppr

#1612356

Topic: Gas Laws

He is kept in a rigid container of volume 67.2 ltr at STP. The heat supplied to the gas to increase its temperature by 20 °C is:

$Q = nC_v \Delta T = \frac{67.2}{22.4}$	$\frac{3R}{20} =$	3 × ³ × 8 31/	1 × 20 = 748 /
22.4	2.20-	2 2	+ ~ 20 = 7405

#1612357

Topic: Nature of Electromagnetic Waves

Some devices and electromagnetic wave are given in Column -I and Column - II, match the device with electromagnetic wave work:

Column - I	Column - II
(A) Mobile	(P) Microwave
(B) Sonar	(Q) IR
(C) Radar	(R) Radio wave
(D) Optical fiber	(S) Ultra sound

$A \qquad (A \Rightarrow S); (B \Rightarrow Q), (C \Rightarrow P), (D \Rightarrow R)$

В	$(A \Rightarrow Q); (B \Rightarrow S), (C \Rightarrow P), (D \Rightarrow R)$
с	$(A \twoheadrightarrow Q); (B \twoheadrightarrow S), (C \twoheadrightarrow R), (D \twoheadrightarrow P)$
D	$(A \nrightarrow S); (B \nrightarrow Q), (C \nrightarrow R), (D \nrightarrow P)$

Solution

1)*Mobile – IR*;

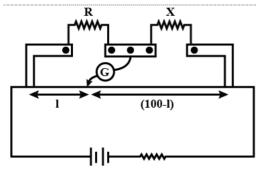
IR wireless is the use of wireless technology in devices or systems that convey data through infrared (IR) radiation. Infrared is electromagnetic energy at a wavelength or wavelengths somewhat longer than those of red light.the Infrared feature or IR LED as is popularly known, smartphones can now be used as a remote controller for TVs, set to boxes, AC etc

2)SONAR - Ultrasound

The ultrasonic sensor uses sonar to determine the distance to an object.

3)Radar - Microwave

Microwave Radar Sensor module has been designed as an alternative to the common PIR motion sensors widely used in burglar alarms and security lights. Like the PIR (https://robu.in/product-category/sensors/ir-and-pir-sensors/)sensor this sensor also detects only movements within its detection range.


4) Optical Fiber - Radiowaves

Radio over fiber (RoF) or RF over fiber (RFoF) refers to a technology whereby light is modulated by a radio frequency signal and transmitted over an optical fiber (https://en.wikipedia.org/wiki/Optical_fiber) link. Main technical advantages of using fiber optical links are lower transmission losses and reduced sensitivity to noise and electromagnetic interference compared to all-electrical signal transmission.

$(A \twoheadrightarrow Q); (B \twoheadrightarrow S), (C \twoheadrightarrow P), (D \twoheadrightarrow R)$

#1612358

Topic: Potentiometer

Which of the above is incosistent for the given meter bridge:

S.N	R	Р
1.	1000Ω	60 cm
2.	100Ω	13 cm
3.	10Ω	1.5 cm
4.	1Ω	1 cm

A 1

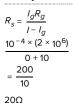
B 2

с з

D 4

Solutio	n
	D(1

1) $X = \frac{R(100 - \ell)}{\ell}$
= <u>1000(100 - 60)</u>
60 = <u>40,000</u>
= 60
666.66Ω
$2)X = \frac{R(100 - \ell)}{\ell}$
100(100 - 13)
$=\frac{13}{8700}$
= 669.23Ω
$3)\chi = \frac{R(100 - \ell)}{\ell}$
= $\frac{10(100 - 15)}{15}$
= $\frac{850}{15}$
= 56.66Ω
$4)X = \frac{R(100 - \ell)}{\ell}$
$=\frac{1(100-1)}{1}$
= 99Ω
so answer is 4


#1612360

Topic: Circuit Instruments

Full scale deflection current for a galvanometer is $10^{-4}A$. a resistance of $2 \times 10^{6}\Omega$ is connected in series. Calculate shunt required to correct in into an ammeter of range 0mA + 10mA.

Solution

Download other JEE Main Answer Key here: https://www.toppr.com/bytes/jee-main-answer-keys/

