\#1612238

Topic: Circuit Instruments

If the reading of the ideal voltmeter shown in the circuit is $2 V$ the internal resistance of the two identical cells is

A 1Ω
B
0.5Ω
C $\quad 1.5 \Omega$
D 2Ω

Solution

$i=\frac{3}{8+2 r}$
\therefore Reading of voltmeter $=i \times 6=\frac{3}{8+2 r} \times 6=2$
$\Rightarrow 2 r+8=9 \Rightarrow r=\frac{1}{2} \Omega$

\#1612240

Topic: Speed of Sound
A stationary source of sound is emitting sound of frequency 500 Hz . Two observers A and B lying on the same line as the source, observe frequencies 480 Hz and 530 Hz respectively. The velocity of A and B respectively are (in m / s), speed of sound $=300 \mathrm{~m} / \mathrm{s}$.

A
12, 18

B 8,18

C $\quad 18,8$

D $\quad 18,12$
Solution
$f_{A}=\left(\frac{300-V_{A}}{300}\right) \times 500=480$
$\Rightarrow 15000-50 V_{A}=14400$
$\Rightarrow \frac{600}{50}=V_{A} \Rightarrow V_{A}=12 \mathrm{~m} / \mathrm{s}$
$f_{B}=\left(\frac{300+V_{B}}{300}\right) \times 500=530$
$\Rightarrow V_{B}+300=318$
$V_{B}=18 \mathrm{~m} / \mathrm{s}$

\#1612245

Topic: Acceleration due to Gravity
The height above the surface of earth at which acceleration due to gravity is half the acceleration due to gravity at surface of earth is $\left(R=6.4 \times 10^{6} \mathrm{~m}\right)$

A $\quad 6.4 \times 10^{6} \mathrm{~m}$
B $2.6 \times 10^{6} \mathrm{~m}$
C $\quad 12.8 \times 10^{6} \mathrm{~m}$
D $\quad 19.2 \times 10^{6} \mathrm{~m}$

Solution

$\frac{g}{2}=\frac{G m}{(R+h)^{2}}$
$g=\frac{G m}{R^{2}}$
$\frac{1}{2}=\frac{R^{2}}{(R+h)^{2}}$
$R+h=\sqrt{2} R$
$R=0.41 R$
$=0.41 \times 6.4 \times 10^{6} \mathrm{~m}=2.6 \times 10^{6} \mathrm{~m}$

\#1612250

Topic: Free, Forced and Damped Oscillations
Equation of motion for a particle performing damped harmonic oscillation is given as $x=e^{-1 t} \cos (10 \pi t+\phi)$. The times when amplitude will half of the initial is :

A 27

B 4

C 1
D 7
Solution
$\frac{A_{0}}{2}=A_{0 e^{-0.1 t}} \Rightarrow e^{-0.1 t}=2 \Rightarrow 0.1 t=\operatorname{Pn} 2$
$t=\frac{P n 2}{0.1}=10 P_{n 2}=6.93=7 \mathrm{~s}$

\#1612253

Topic: Change in Nucleus due to Radioactive decay
A sample containing same number of two nuclei A and B start decaying. The decay constant of A and B are 10λ and λ. The time after which $\frac{N_{A}}{N_{B}}$ becomes $\frac{1}{e}$ is
A $\frac{1}{9 \lambda}$
B $\frac{1}{18 \lambda}$
C $\quad \frac{2}{9 \lambda}$
D $\frac{3}{19 \lambda}$
Solution
$\frac{N_{A}}{N_{B}}=\frac{N_{0 e^{-10 \lambda t}}}{N_{0 e^{-\lambda t}}}=\frac{1}{e}$
$\Rightarrow e^{-9 \lambda t}=e^{-1}$
$\Rightarrow 9 \lambda t=1$
$\Rightarrow t=\frac{1}{9 \lambda}$

\#1612262

Topic: Drift of electrons
In conducting wire of radius 5 mm , resistivity $\rho=1.1 \times 10^{-8} \Omega / \mathrm{m}$ and current of $5 A$ is flowing. Drift velocity of free electron is $1.1 \times 10^{-3} \mathrm{~m} / \mathrm{s}$ find out mobility of free electron.

A $\quad 1.57 \mathrm{~m}^{2} \mathrm{volt} / \mathrm{sec}$
B $\quad 1.25 \mathrm{~m}^{2}$ volt/sec
C $\quad 1.2 \mathrm{~m}^{2} \mathrm{volt} / \mathrm{sec}$
D $\quad 2 \mathrm{~m}^{2} \mathrm{volt} / \mathrm{sec}$
Solution
$V_{d}=\mu E=\mu \frac{V}{\rho}$
$V_{d}=\frac{\mu \cdot I R}{\rho} \frac{\mu \cdot I_{\rho} P}{A P}=\frac{\mu \cdot I_{\rho}}{A}$
$\mu=\frac{V_{d .} A}{I_{\rho}}=\frac{1.1 \times 10^{-3} \times \lambda \times 25 \times 10^{-6}}{5 \times 1.1 \times 10^{-8}}$
$\mu=1.57 \mathrm{~m}^{2} \mathrm{volt} / \mathrm{sec}$.

\#1612277

Topic: Combination of Lenses and Mirrors

Find out equivalent focal length of given lens combination

A $\left(\frac{R}{\mu_{1}-\mu_{2}}\right)$
B $\quad\left(\frac{2 R}{\mu_{1}-\mu_{2}}\right)$
C $\quad\left(\frac{4 R}{\mu_{1}-\mu_{2}}\right)$
D $\left(\frac{R}{\mu_{1}+\mu_{2}}\right)$

Solution

$\frac{1}{f_{1}}=\left(\mu_{1}-1\right)\left(\frac{1}{\infty}-\frac{1}{-R}\right)=\frac{\mu_{1}-1}{R}$
$\frac{1}{f_{2}}=\left(\mu_{2}-1\right)\left(\frac{1}{-R}-\frac{1}{\infty}\right)=\frac{\mu_{2}-1}{-R}$
$\frac{1}{f_{e q}}=\left(\frac{\mu_{1}-1}{R}\right)-\left(\frac{\mu_{1}-1}{R}\right)$
$f_{e q}=\left(\frac{R}{\mu_{1}-\mu_{2}}\right)$

\#1612288

Topic: Graphs in Kinematics

The graph shows the variation of $\ell n R \mathrm{v} / \mathrm{s} \frac{1}{T^{2}}$, where R is resistance and T is temperature. Then find R as function of T .
A $R=R_{0 e}-T_{0}^{2} / T^{2}$
B $\quad R=R_{0} e^{-T^{2} / T_{0}^{2}}$
C $\quad R=R_{0} e^{T^{3} / T^{0}}$
D $\quad R=R_{0} e^{-T^{3} / T_{0}^{3}}$
Solution
$y=m x+c$
$\ln R=-m \frac{1}{T^{2}}+c$
$R=e^{-\frac{m}{T^{2}} \times e^{c} .}$
$R=R_{0} e^{-} \frac{T_{0}^{2}}{T^{2}}$

\#1612308

Topic: Basics of Moment of Inertia
Two uniform circular rough disc of moment of inertia I_{1} and $\frac{I_{1}}{2}$ are rotating with angular velocity ω_{1} and $\frac{\omega_{1}}{2}$ respectively in same direction. Now one disc is placed the other disc co-axially. The change in kinetic energy of the system is :

A $-\frac{1}{24} l_{1} \omega_{1}^{2}$
B $\quad \frac{1}{24} l_{1} \omega_{1}^{2}$
C $\quad \frac{1}{12} l_{1} \omega_{1}^{2}$
D $\quad-\frac{1}{12} l_{1} \omega_{1}^{2}$
Solution
$L_{i}=L_{f}$
${ }_{1} \omega_{1}+\frac{l_{1}}{2} \frac{\omega_{1}}{2}={ }_{1} \omega_{f}+\frac{l_{1}}{2} \omega_{t}$
$\frac{51_{1} \omega_{1}}{4}=\frac{3}{2} \imath_{1} \omega_{f} \omega f=\frac{5}{6} \omega_{1}$
$\Delta K . E .=\left(\frac{1}{2} \nmid \omega_{f}^{2}+\frac{1}{2} \frac{1}{2} \omega_{f}^{2}\right)-\left(\frac{1}{2} \uparrow \omega_{1}^{2}+\frac{1}{2} \frac{1}{2}\left(\frac{\omega_{1}}{2}\right)^{2}\right)^{2}$
$=\frac{1}{2} \cdot \frac{3}{2} l_{1} \frac{25}{36} \omega_{1}^{2}-\frac{1}{2} \cdot \frac{9}{8}{ }_{1} \omega_{1}^{2}$
$=\frac{751 \omega_{1}^{2}}{144}-\frac{9}{8} \ell \omega_{1}^{2}$
$=\frac{75-81}{144} h \omega_{1}^{2}$
$\Delta K . E=-\frac{1}{24} l_{1} \omega_{1}^{2}$

\#1612332

Topic: Lorentz Force
An electron, a proton and a H_{e}^{+}ion projected into a magnetic field with same kinetic energy, with velocities being perpendicular to the magnetic field. The order of the radii ot cirlces traced by them is:

A $\quad r_{p}>r_{\mathrm{He}^{+}}>r_{e}$

B $\quad r_{\mathrm{He}^{+}}>r_{p}>r_{e}$
C $\quad r_{p}=r_{\mathrm{He}^{+}}>r_{e}$
D None of these

Solution
radius of circle is given by
$r=\frac{m v}{q B}=\frac{p}{q B}=\frac{\sqrt{2 m k}}{q B}=\frac{\sqrt{2 m}}{q B} \sqrt{k}$
where K is kinetic energy
For poor
$r_{p}=\frac{\sqrt{2 m_{p}}}{e B} \sqrt{k}$
for electron $r_{e}=\frac{\sqrt{2 m_{e}}}{e B} \sqrt{K}$
for $\mathrm{He}^{+} r_{\mathrm{He}^{+}}=\frac{\sqrt{2 \times 4 m_{p}}}{e B} \sqrt{K}=\frac{\sqrt[2]{2 m_{p}}}{e B} \sqrt{K}$
Clearly $r_{H_{e}}>r_{p}>r_{e}$

\#1612334

Topic: Equivalent Capacitance in series-parallel

Plot $A \& B$ represent variation of charge with potential difference across the combination (series and parallel) of two capacitors. Then find the value of capacitance of capacitors.

A $20 \mu F, 30 \mu F$
B $10 \mu F, 40 \mu F$
c $10 \mu \mathrm{~F}, 15 \mu \mathrm{~F}$

Subject: Physics | Shift 1| 10th April 2019
D $25 \mu F, 25 \mu F$

Solution

For parallel combination -
$q=10\left(C_{1}+C_{2}\right)$
$q_{1}=500 \mu \mathrm{C}$
$500=10\left(C_{1}+C_{2}\right)$
$C_{1}+C_{2}=50 \mu F \ldots$ ()
For series combination
$q_{2}=10 \frac{C_{1} C_{2}}{\left(C-2+C_{2}\right)}$
$80=10 \frac{C_{1} C_{2}}{50}$ From equation ... (i)
$C_{1} C_{2}=400 \ldots$ (i)
From equation (i) and (ii)
$C_{1}=10 \mu F \quad C_{2}=40 \mu F$

\#1612335

Topic: Transistor
Power gain for $N-P-N$ transistor is 10^{6}, input resistance 100Ω and output resistance 1000Ω. find out current gain.

A 100

B 150

C 200

D 50

Solution

Power gain $=(\text { Current gain })^{2}\left(\frac{R_{\text {out }}}{R_{\text {in }}}\right)$
$10^{6}=\beta^{2} \times \frac{10^{4}}{100}$
$\beta=100$

\#1612336

Topic: Basics of Projectile Motion

A Circular ring of radius $3 a$ is uniformly charged with charge q is kept in $x-y$ plane with center at origin. A particle of charge q and mass m is projected from $x=4 a$ towards origin. Find the minimum speed of projection such that it reaches origin.

A

$$
\sqrt{\frac{q^{2}}{15 \pi \varepsilon_{0} m a}}
$$

B

$$
\sqrt{\frac{q^{2}}{30 \pi \varepsilon_{0} m a}}
$$

C

$$
\sqrt{\frac{q^{2}}{10 \pi \varepsilon_{0} m a}}
$$

D $\sqrt{\frac{q^{2}}{20 \pi \varepsilon_{0} m a}}$

Solution

$W_{\text {ext }}+W_{\text {i.n.c. }}=\Delta K E+\Delta U$
$0=\left(0-\frac{1}{2} m_{\nu^{2}}\right)+q\left(\frac{k q}{3 a}-\frac{K q}{5 a}\right)$
$\frac{1}{2} m_{\nu}{ }^{2}=\frac{2 k_{q}^{2}}{15 a}$
$v=\sqrt{\frac{4 K^{2}}{15 m a}}=\sqrt{\frac{q^{2}}{15 \pi \varepsilon_{0} m a}}$

\#1612337

Topic: Isobaric, Isochoric, Isothermal Processes
An Ideal gas undergoes an isobaric process. If its heat capacity is C_{v} at constant volume and number of mole n. then the ratio of work done by gas to heat given to gas when temperature of gas changes by ΔT is:

A $\quad\left(\frac{n R}{c_{\nu}+R}\right)$
B $\quad\left(\frac{R}{c_{v}+R}\right)$
C $\quad\left(\frac{n R}{c_{v}-R}\right)$
D $\quad\left(\frac{R}{c_{V}-R}\right)$

Solution

$\frac{f}{2} R=\frac{C_{v}}{n}$
$W=n R \Delta T$
$\Delta Q=\left(\frac{f}{2}+1\right)_{n R \Delta T}$
$\frac{W}{\Delta Q}=\left(\frac{2}{f+2}\right)=\frac{2}{\frac{2 C_{v}}{n R}+2}=\left(\frac{n R}{C_{v}+R}\right)$

\#1612338

Topic: Basics of Moment of Inertia
Surface mass density of a disc of mass m and radius R is $\sigma=K_{r}{ }^{2}$. then its moment of inertia w.r.t. axis of rotation passing through centre and perpendicular to the plane of disc

A $\quad I=\frac{3}{2} m R^{2}$
B $\quad I=\frac{4}{3} m R^{2}$
C $\quad I=\frac{2}{5} m R^{2}$
D $\quad 1=\frac{2}{3} m R^{2}$

Solution

$d l=d m_{r^{2}}{ }^{2}$
$I=\int_{0}^{R} K r^{2} 2 \pi r d r . r^{2}=K 2 \pi \frac{R^{6}}{6}=\frac{K \pi R^{6}}{3}$
$\int_{0}^{m} d m=\int_{0}^{R} K_{r} r^{2} 2 \pi r d r$
$m=2 \pi K \frac{R^{4}}{4}=\frac{\pi K R^{4}}{2}$
$I=\frac{2}{3} m R^{2}$

\#1612340

Topic: Amplitude Modulation
A modulating wave of frequency 100 MHz and amplitude 100 V is superimposed on a carrier wave of frequency 300 GHz and amplitude 400 V . the value of modulating index and difference between the maximum frequency and minimum frequency of modulated wave are respectively:

A $\quad 0.25,1 \times 10^{8} \mathrm{~Hz}$
B $\quad 4,2 \times 10^{8} \mathrm{~Hz}$
C $\quad 4,1 \times 10^{8} \mathrm{~Hz}$
D $0.25,2 \times 10^{8} \mathrm{~Hz}$
Solution
Modulating index $m=\frac{100}{400}=0.25$
$f_{\text {max. }}-f_{\text {min. }}=\left(f_{c}+f_{m}\right)-\left(f_{c}-f_{m}\right)$
$=2 F_{M}=2 \times 10^{8} \mathrm{~Hz}$

\#1612344

Topic: Maxwell's Equations
The maximum kinetic energy of electron if wavelength of incident electromagnetic wave is 260 nm and cut-off wavelength is 380 nm given $h c=1237 \mathrm{~nm}-e V$ is

A 1.5 eV
B $\quad 6.4 \mathrm{eV}$

C $\quad 10 \mathrm{eV}$

D None of these

Solution

We know
$K E_{\text {max }}=\frac{h c}{\lambda}-\frac{h c}{\lambda_{0}}$
$=\frac{1237 \mathrm{~nm} \cdot \mathrm{eV}}{260 \mathrm{~nm}}-\frac{1237 \mathrm{~nm} \cdot \mathrm{eV}}{380 \mathrm{~nm}}$
$=1.5 \mathrm{eV}$

\#1612346

Topic: Maxwell's Equations
If ${ }_{E}=E_{0} \cos (k z) \cos (\omega t)_{i}$ then $\vec{B}^{\text {for electromagnetic wave is: }}$
A $\dot{B}=\frac{E_{0}}{C} \hat{k}$
B $\vec{B}=\frac{E_{0}}{C} \sin (k z) \sin (\omega t)_{i}$

C $\dot{B}=\frac{E_{0}}{C} \sin (k z) \cos (\omega t)_{j}$
D $\dot{B}=\frac{E_{0}}{C} \cos (k z) \sin \left(\omega t \hat{j}_{j}\right.$

Solution

$\frac{d E}{d z}=-\frac{d B}{d t}$
If $\vec{E}=E_{0} \cos (k z) \cos (\omega t)$ then
$\vec{B}=\frac{E_{0}}{C} \sin (k z) \sin (\omega t)$ will satisfy the equation

\#1612348

Topic: Basics of Projectile Motion
A particle is projected vertically upwards with speed v_{0}. The drag force acting on it given by $f_{d r a g}=m \gamma v^{2}$. the time when it is at maximum height is:

A $\frac{1}{\sqrt{g \gamma}} \tan ^{-1}\left(\frac{\sqrt{V}}{\sqrt{g}} v_{0}\right)$
B

$$
\sqrt{g V} \tan ^{-1}\left(\frac{\sqrt{\bar{V}}}{\sqrt{g}} v_{0}\right)
$$

C $\quad \frac{\tan ^{-1}}{\sqrt{g Y}}\left(\frac{\sqrt{g}}{\sqrt{V}} v_{0}\right)$
D $\frac{1}{\sqrt{g \gamma}} \tan ^{-1}\left(\frac{\sqrt{V}}{\sqrt{g}} \frac{1}{v_{0}}\right)$
Solution
$a=-\left(g+y v^{2}\right)$
$\frac{d v}{d t}=-\left(g+\gamma v^{2}\right)$
$\int_{v_{0}}^{0} \frac{d v}{g+\gamma v^{2}}=-\int_{0}^{t} d t$
$\frac{1}{r} \int_{v_{0}}^{0} \frac{d v}{\left(\frac{g}{r}+v^{2}\right)}=-\int_{0}^{t} d t$

$\frac{1}{\sqrt{g \gamma}} \tan ^{-1}\left(\frac{\sqrt{\bar{V}}}{\sqrt{g}} v_{0}\right)=t$

\#1612349

Topic: Transformers
In a step-down transform the turn ratio is $1: 2$ and output power is 2.2 kW . if output current is $10 A$ then the value of input voltage and input current:

A $100 \mathrm{~V}, 20 \mathrm{~A}$
B $\quad 110 \mathrm{~V}, 10 \mathrm{~A}$
C $440 \mathrm{~V}, 5 \mathrm{~A}$
D $\quad 440 \mathrm{~V}, 20 \mathrm{~A}$
Solution
$P_{\text {out }}=V_{0} 10$
$\Rightarrow 2200=V_{0} \times 10 \Rightarrow V_{0}=220$ volt
$\therefore V-i=2 \times 220=440 V\left(\because N_{s} / N_{p}=1 / 2=V_{0} / V_{1}\right)$
Also $2200=440 \times I_{i}$
$\Rightarrow I_{i}=5 A$

\#1612350

Topic: Viscosity
The depression of mercury in a capillary tube of radius R_{1} is observed to be equal to the rise of water in another capillary tube of radius R_{2}. if the ratio of surface tension of mercury and water is 7.5 , ratio of their density $\frac{\rho_{\mathrm{Hg}}}{\rho_{\text {water }}}=13.6$ and their angle of contact are $\theta_{H g}=135^{\circ}$ and $\theta_{\text {water }}=0^{\circ}$ in the respective tubes then R_{1} / R_{2} is:

A 0.2

B $\quad 0.4$
$\begin{array}{ll}\text { C } & 0.7\end{array}$
D $\quad 0.8$
Solution
$\left|h_{H g}\right|=\left|h_{\text {water }}\right|$
$\frac{\left.2 S_{H g}\right] \cos \theta_{H g}}{\rho_{H g} R_{H g} g}=\frac{2 S_{w} \cos \theta_{w}}{\rho_{w} R_{w} g}$
$\frac{R_{H g}}{R_{w}}=\frac{\rho_{w}}{\rho_{H g}} \frac{S_{h g}}{S_{w}} \frac{\cos \theta_{H g}}{\cos \theta_{w}}=\frac{1}{13.6} \times 7.5 \times \frac{1}{\sqrt{2}}$
$\frac{R_{H g}}{R_{w}}=0.4$
\#1612351
Topic: Elastic Collisions in One-Dimension

Two particle of masses m and $2 m$ are colliding elastically as given in figure. If V_{1} and V_{2} speed of particle just after collision then

A $\quad V_{1}=11.16 \mathrm{~m} / \mathrm{s}, V_{2}=6.31 \mathrm{~m} / \mathrm{s}$
B $\quad V_{1}=10.16 \mathrm{~m} / \mathrm{s}, V_{2}=5.31 \mathrm{~m} / \mathrm{s}$
C $\quad V_{1}=9.16 \mathrm{~m} / \mathrm{s}, V_{2}=6.31 \mathrm{~m} / \mathrm{s}$
D $\quad V_{1}=6.31 \mathrm{~m} / \mathrm{s}, V_{2}=11.16 \mathrm{~m} / \mathrm{s}$

Solution

Using momentum conservation
In x direction
$m \times 10 \cos 60^{\circ}+2 m \frac{5}{\sqrt{2}}=\frac{m v_{2}}{\sqrt{2}}+2 m v_{1} \frac{\sqrt{3}}{2}$
$5 \sqrt{2}+10=v^{2}+\sqrt{6} V_{1} \ldots \ldots(A)$
In Y-direction
$2 m \frac{5}{\sqrt{2}}-m \frac{10 \sqrt{3}}{2}=\frac{2 m v_{1}}{2}-\frac{m v_{1}}{\sqrt{2}}$
$10-5 \sqrt{6}=\sqrt{2} V_{1}-V_{2} \ldots(B)$
Using A and B
$V_{1}=6.31 \mathrm{~m} / \mathrm{s}, V_{2}=11.16 \mathrm{~m} / \mathrm{s}$

\#1612352

Topic: Magnetic field

Two parallel infinite wires separated by distance ' d ' carry currents as shown in figure.
The distance from a third infinite wire be kept parallel to wire carrying current Λ_{1}, the wire such that it stays in equilibrium is

A $\frac{l_{2}}{l_{2}+l_{1}} d$ or $\frac{l_{1}}{l_{1}+l_{2}} d$
B $\frac{l_{2}}{l_{2}-l_{1}}$ dor $\frac{l_{1}}{l_{1}-l_{2}} d$
C $\frac{l_{2}}{l_{1}-l_{2}} d$ or $\frac{l_{1}}{l_{1}-l_{2}} d$
D $\frac{2 l_{2}}{l_{2}+l_{1}} d$ or $\frac{l_{1}}{l_{1}-l_{2}} d$

Solution

For the case when $I_{1}<I_{2}$
Let the length of the third wire is $p(\rho \rightarrow \infty)$
For equilibrium $F_{1}=F_{2}$
$\Rightarrow \frac{\mu_{0} I_{1} I}{2 \pi x} \rho=\frac{\mu_{0} I_{2} I}{2 \pi(d+x)} \rho \Rightarrow \frac{d+x}{x}=\frac{I_{2}}{l_{1}} \Rightarrow \frac{d}{x}=\frac{I_{2}-I_{1}}{I_{2}} \Rightarrow x=\left(\frac{I_{2}}{I_{2}-I_{1}}\right) d$
For the case when $I_{2}<I_{1}$
$F_{1}=F_{2}$
$\frac{\mu_{0} I_{1} / P}{2 \pi x}=\frac{\mu_{0} I_{2} / P}{2 \pi(x-d)}$
$\Rightarrow \frac{x-d}{x}=\frac{l_{2}}{l_{1}}$
$\Rightarrow 1-\frac{d}{x}=\frac{l_{2}}{l_{1}} \Rightarrow \frac{l_{1}-l_{2}}{l_{1}}=\frac{d}{x}$
$\Rightarrow x=\left(\frac{I_{1}}{I_{1}-I_{2}}\right) d$
\therefore value of x is $\frac{l_{2}}{l_{2}-l_{1}}$ or $\frac{l_{1}}{l_{1}-l_{2}} d$

\#1612353

Topic: Force and Torque
The coordinates of a particle of mass ' m ' as function of time are given by $x=x_{0}+a_{1} \cos \left(\omega_{1} t\right)$ and $y=y_{0}+a_{2} \sin \left(\omega_{2} t\right)$. The torque on particle about origin at time $t=0$ is:

A $\quad\left(m a{ }_{1} \omega_{1}^{2} x_{0}\right) \hat{k}$
B $\quad\left(m a{ }_{1} \omega_{1}^{2} x_{0}^{2}\right) \hat{k}$
C $\left(m a{ }_{1} \omega_{1}^{2} y_{0}\right) \hat{k}$
D $\quad\left(m a{ }_{1} \omega_{1}^{2} x_{0} y_{0}\right) \hat{k}$
Solution

```
\vec{r}=(\mp@subsup{x}{0}{}+\mp@subsup{a}{1}{}\operatorname{cos}(\mp@subsup{\omega}{1}{}t))\hat{i}+(\mp@subsup{y}{0}{}+\mp@subsup{a}{2}{}\operatorname{sin}(\mp@subsup{\omega}{2}{}t)\hat{j}
v}=-\mp@subsup{a}{1}{}\mp@subsup{\omega}{1}{}\operatorname{sin}(\mp@subsup{\omega}{1}{}t)\hat{i}+\mp@subsup{a}{2}{}\mp@subsup{\omega}{2}{}\operatorname{cos}(\mp@subsup{\omega}{2}{}t)\hat{j
a}=-\mp@subsup{a}{1}{}\mp@subsup{\omega}{1}{2}\operatorname{cos}(\mp@subsup{\omega}{1}{}t)\hat{i}-\mp@subsup{a}{2}{}\mp@subsup{\omega}{2}{2}\operatorname{sin}(\mp@subsup{\omega}{2}{}t\mp@subsup{)}{j}{j
at t=0,\vec{r}=(\mp@subsup{x}{0}{}+\mp@subsup{a}{1}{})\hat{i}+\mp@subsup{y}{0}{}\hat{j}
\vec{F}=m\vec{a}=-m\mp@subsup{a}{1}{}\mp@subsup{\omega}{1}{2\hat{i}},\vec{i}
\vec{T}}=\vec{r}\times\vec{F}=(m\mp@subsup{a}{1}{}\mp@subsup{\omega}{1}{2}\mp@subsup{y}{0}{})\hat{k
```

\#1612354
Topic: Prism

For path $A \rightarrow B$ optical path is

A $2(a+b)$
B $2(a-b)$

C $a+b$

D $a-b$

Solution
$A C=\frac{a}{\cos 60^{\circ}} ; C B=\frac{b}{\cos 30^{\circ}}$
$\sin 60^{\circ}=\mu \sin 30^{\circ}$
$\mu=\sqrt{3}$
optical path $=A C+\mu C B$
$=\frac{a}{\cos 60^{\circ}}+\mu \frac{\beta}{\cos 30^{\circ}}=2 a+\sqrt{\frac{6}{\frac{\sqrt{3}}{2}}}=2(a+b)$

\#1612355

Topic: Introduction to Kinetic Theory
Rms speed of O_{2} molecule is $200 \mathrm{~m} / \mathrm{s}$ at $T=300 \mathrm{~K}$ and $P=3$ atm. If diameter of molecule is 0.3 nm then collision frequency is:

A $\quad 2.9 \times 10^{7} s^{-1}$
B $\quad 2.9 \times 10^{6} s^{-1}$

C $\quad 2.9 \times 10^{8}$

D $\quad 2.9 \times 10^{5}$

Solution
Collision frequency $=\sqrt{\frac{8 k T}{\pi m}} \cdot \frac{\sqrt{2} \pi d^{2} N_{A} P}{R T}$
$=\sqrt{\frac{8}{\pi} \times \frac{25}{3} \cdot \frac{300}{32}} \frac{\sqrt{2 \pi} \times 9 \times 10^{-29} \times 6.023 \times 10^{23 \times 10^{5}}}{\frac{25}{3} \times 300}=\frac{722.14}{25} \times 10^{6}$
$=28.8 \times 10^{6}=2.9 \times 10^{7} s^{-1}$

\#1612356

Topic: Gas Laws
He is kept in a rigid container of volume 67.2 Itr at STP. The heat supplied to the gas to increase its temperature by $20^{\circ} \mathrm{C}$ is:

A 780 J

B 748 J

C 718 J

D 680 J

Solution

$Q=n C_{v} \Delta T=\frac{67.2}{22.4} \cdot \frac{3 R}{2} \cdot 20=3 \times \frac{3}{2} \times 8.314 \times 20=748 \mathrm{~J}$

\#1612357

Topic: Nature of Electromagnetic Waves
Some devices and electromagnetic wave are given in Column -I and Column - II, match the device with electromagnetic wave work:

Column - I	Column - II
(A) Mobile	(P) Microwave
(B) Sonar	(Q) IR
(C) Radar	(R) Radio wave
(D) Optical fiber	(S) Ultra sound

A $(A \rightarrow S) ;(B \rightarrow Q),(C \rightarrow P),(D \rightarrow R)$
B $(A \rightarrow Q) ;(B \rightarrow S),(C \rightarrow P),(D \rightarrow R)$
C $(A \rightarrow Q) ;(B \rightarrow S),(C \rightarrow R),(D \rightarrow P)$
D $(A \rightarrow S) ;(B \rightarrow Q),(C \rightarrow R),(D \rightarrow P)$

Solution

1) Mobile - IR;

IR wireless is the use of wireless technology in devices or systems that convey data through infrared (IR) radiation. Infrared is electromagnetic energy at a wavelength or wavelengths somewhat longer than those of red light.the Infrared feature or IR LED as is popularly known, smartphones can now be used as a remote controller for TVs, set tc boxes, AC etc

2)SONAR - Ultrasound

The ultrasonic sensor uses sonar to determine the distance to an object.
3)Radar-Microwave

Microwave Radar Sensor module has been designed as an alternative to the common PIR motion sensors widely used in burglar alarms and security lights. Like the PIR (https://robu.in/product-category/sensors/ir-and-pir-sensors//sensor this sensor also detects only movements within its detection range.
4)OpticalFiber - Radiowaves

Radio over fiber (RoF) or RF over fiber (RFoF) refers to a technology whereby light is modulated by a radio frequency signal and transmitted over an optical fiber (https://en.wikipedia.org/wiki/Optical_fiber) link. Main technical advantages of using fiber optical links are lower transmission losses and reduced sensitivity to noise and electromagnetic interference compared to all-electrical signal transmission.
$(A \rightarrow Q) ;(B \rightarrow S),(C \rightarrow P),(D \rightarrow R)$

\#1612358

Topic: Potentiometer

Which of the above is incosistent for the given meter bridge:

S.N	R	ρ
1.	1000Ω	60 cm
2.	100Ω	13 cm
3.	10Ω	1.5 cm
4.	1Ω	1 cm

A 1

B 2

C 3
D
Solution

1) $X=\frac{R(100-\rho)}{\rho}$
$=\frac{1000(100-60)}{60}$
$=\frac{40,000}{60}$
666.66Ω
2) $X=\frac{R(100-\rho)}{\rho}$
$\frac{100(100-13)}{13}$
$=\frac{8700}{13}$
$=669.23 \Omega$
3) $X=\frac{R(100-\rho)}{\rho}$
$=\frac{10(100-15)}{15}$
$=\frac{850}{15}$
$=56.66 \Omega$
4) $X=\frac{R(100-\rho)}{\rho}$
$=\frac{1(100-1)}{1}$
$=99 \Omega$
so answer is 4

\#1612360

Topic: Circuit Instruments
Full scale deflection current for a galvanometer is $10^{-4} A$. a resistance of $2 \times 10^{6} \Omega$ is connected in series. Calculate shunt required to correct in into an ammeter of range $0 m A+10 m A$.

Solution
$R_{s}=\frac{I_{g} R_{g}}{1-I_{g}}$
$\frac{10^{-4 \times\left(2 \times 10^{6}\right)}}{0+10}$
$=\frac{200}{10}$
20Ω

Download other JEE Main Answer Key here: https://www.toppr.com/bytes/jee-main-answer-keys/

