\#1612236

Topic: Optical Isomerism
(a)

(b)

(d)

Rate of $S_{N} 1$ reaction for the following compounds is:

A $\quad a>b>c>d$
B $\quad b>c>a>d$
C $\quad b>c>d>a$
D $\quad d>c>b>a$
Solution
Solution:- (C) $b>c>d>a$
The $S_{n 1}$ reactivity is proportional to stability of carbocations formed in the rate determining step.
\#1612237
Topic: Preparation of some addition polymers
In a given polymers which is a condensation polymer?

A Teflon

B Neoprene

C Buna-S
D Nylon-6,6

Solution

Solution:- (D) Nylon-6, 6
Except Nylon-6, 6 all other given polymers are addition polymers.

\#1612239

Topic: Chemical reactions of amines
$\mathrm{CH}_{3}-\stackrel{\mathrm{OH}}{\mathrm{CH}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2} \xrightarrow{\text { Ethyl formate }} \rightarrow$ Priethylamine
The major product of the given reaction is:

A $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
B $\mathrm{CH}_{3}-\mathrm{CH}$ IOH-CH $=\mathrm{CH}_{2}$
c $\mathrm{CH}_{3}-\mathrm{CH} 10-\mathrm{C}_{10-\mathrm{H}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
D $\mathrm{CH}_{3}-\mathrm{CHIOH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\stackrel{\mathrm{O}}{\mathrm{O}}-\mathrm{H}$

Solution

\#1612241

Topic: Methods of preparation of amines
N-Ethylphthalimide \rightarrow Ethylamine
Reagent for the conversion of this reaction is:

A $\mathrm{H}_{2} \mathrm{O}$
B $\quad \mathrm{NaBH}_{4}$
C $\mathrm{NH}_{2}-\mathrm{NH}_{2}$

D CaH_{2}

\#1612242

Topic: Disaccharides and polysaccharides
Which type of Linkage is present in amylopectin?

A $\quad a-D-$ Glucose, $C_{1}-C_{4} \& C_{2}-C_{6}$
B $\quad a-D-$ Glucose, $C_{1}-C_{4} \& C_{1}-C_{6}$
C $\quad \beta-D-$ Glucose, $C_{1}-C_{4} \& C_{2}-C_{6}$
D $\quad \beta-D-$ Glucose, $C_{1}-C_{4} \& C_{1}-C_{6}$

\#1612252

Topic: Chemical reactions of haloalkanes - Substitution reactions
$\mathrm{CH}_{3}-\mathrm{CH}_{1} \mathrm{CH}_{3}-\underset{\mathrm{Cl}}{\mathrm{Cl}} \stackrel{\mathrm{H}}{\mathrm{Cl}}-\mathrm{CH}_{3} \xrightarrow{\mathrm{CH}_{3} \mathrm{OH}}$
Major product is:

A $\mathrm{CH}_{3}-\mathrm{CH}_{2} \mid \mathrm{CH}_{3}$
B $\mathrm{CH}_{3}-\stackrel{\mathrm{Cl}_{1} \mathrm{CH}_{3}}{\mathrm{OH}_{3}} \mathrm{CH}_{2}-\mathrm{CH}$
C $\mathrm{CH}_{3}-\mathrm{ClCH}_{3}=\mathrm{CH}-\mathrm{CH}_{3}$
D $\mathrm{CH}_{3}-\mathrm{CH}_{1} \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
Solution
Solution:- (B) $\mathrm{CH}_{3}-\underset{\mathrm{ClCH}_{3}}{\mathrm{CCH}_{3}}-\mathrm{CH}_{2}-\mathrm{CH}$

\#1612255

Topic: Chemical properties of aldehydes and ketones

[^0]A

B

c $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCOOH}$
D

Solution

Solution:- (B)
Malor product is obtained through cross Cannizzaro reaction.

\#1612261

Topic: Types of organic reactions

The correct rate of reaction of given compounds towards electrophilic aromatic substitution reaction is:

A $(b)>(d)>(a)>(c)$
B $(b)>(a)>(d)>(c)$
C $(c)>(a)>(d)>(b)$
D (a) $>($ b $)>($ d $)>(c)$

Solution
Solution:- $(A)(b)>(d)>(a)>(c)$
The rate of reaction of given compounds towards electrophilic substitution reaction depends upon the electron density if benzene nucleus.
\#1612263
Topic: Chemical reactions of ethers

[^1]A

B

c

D

Solution

\#1612265

Topic: Chemical reactions occurring in atmosphere
In which layer of atmosphere there is cloud formation \& in which layer we live respectively?

Troposphere \& troposphere
B Troposphere \& stratosphere
C Stratosphere \& stratosphere
D stratosphere \& troposphere

Hint
Fact.

\#1612278

Topic: Study of d-Block elements
In $S_{C^{3+}}, T_{i}{ }^{2+}, T_{i}{ }^{3+}, V^{2+}$, increasing order of spin only magnetic moment is:

A $\quad S_{C}{ }^{3+}<T_{i}{ }^{2+}<T_{i}{ }^{3+}<V^{2+}$
B $\quad S_{C}{ }^{3+}<T_{i}{ }^{3+}<T_{i}{ }^{2+}<V^{2+}$
C $\quad T_{i}{ }^{2+}<S_{C}{ }^{3+}<T_{i}{ }^{3+}<V^{2+}$
D $\quad S_{C}{ }^{3+}<T_{i}{ }^{2+}<V^{2+}<T_{i}{ }^{3+}$

Solution

Solution:- (B) $S C^{3+}<T i^{+3}<\pi i^{+2}<V^{2+}$
$\mu=\sqrt{n(n+2)}$ B.M
For magnetic moment to be higher, number of unpaired electron must be higher
$\begin{array}{ll}S_{c^{3+}}{ }^{3+} \Rightarrow 3 d^{0} & \mu=0 \\ T_{i}{ }^{2+} \Rightarrow 3 d^{2} & \sqrt{8} \text { B.M } \\ T_{i}{ }^{3+} \Rightarrow 3 d^{1} & \sqrt{3} \text { B.M } \\ V^{2+} \Rightarrow 3 d^{3} & \sqrt{15} \text { B.M }\end{array}$

\#1612282

Topic: Spontaneous and non-spontaneous process
In which case, process will be spontaneous at all temperatures?

A $\Delta H<0, \Delta S>0$
B $\quad \Delta H>0, \Delta S>0$
C $\Delta H<0, \Delta S<0$
D $\Delta H>0, \Delta S<0$
Solution
Solution:- (A) $\Delta H<0$ and $\Delta S>0$
For spontaneous process $\Delta G=\Delta H-T \Delta S$
$\because \Delta H<0$
$\Delta S>0$

\#1612291

Topic: Crystal field theory
In the given complexes
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+} \ldots 1$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{C}\right]^{2+}+. .2$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+\ldots . . .} 3$
The decreasing order of λ absorbed is:

A (iii) $>$ (ii) $>$ (i)
B \quad (iii) $>$ (i) $>$ (i)
C (ii) $>$ (i) $>$ (iii)
D (ii) $>$ (iii) $>$ (i)

Solution

Solution:- (C) (i) $>$ () $>$ (iii)
λ absorbed depends on strength of ligand. For stronger ligand, δ_{0} will be higher, λ will be lesser.
$\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}>\mathrm{Cl}^{-}$decreasing order of strength of ligand.

\#1612294

Topic: Beryllium, calcium and magnesium
Which alloy is used in the manufacturing of Aeroplane?

A $M g-A l$
B $M g-S n$

C $\quad M g-P b$
D $M g-S b$

Solution

Solution:- (A) $M g-A /$
$M g-A /$ alloy is used in manufacturing of Aeroplane.

\#1612298

Topic: Adsorption
Adsorption of a gas follows the equation $\frac{X}{m}=k p^{1 / 2}$
Then the effect of pressure \& temperature on physical adsorption of gas on solid is:

A increase with pressure increase, decrease with temperature increase
B increase with both temperature \& pressure increase
C decrease with pressure increase, increase with temperature increase
D decrease with both temperature \& pressure increase.

Solution

Solution:- (A) Increase with pressure increase, decrease with temperature increase
Physical adoption increase on increasing pressure but decreases on increasing temperature.

\#1612303

Topic: Carbon
In $C, S i, G e$ and $S n$ the decreasing order of catenation is:

A $C>S n>S i=G e$

B $\quad C>S i>S n=G e$
C $\mathrm{Si}>\mathrm{Sn}>\mathrm{C}>\mathrm{Ge}$
D $\mathrm{Ge}>\mathrm{Sn}>\mathrm{Si}>\mathrm{C}$

Solution

Solution:- (A) $C>S i>G e \simeq S n$
The decreasing order of catenation: $C>S i>G e \simeq S n$

\#1612307

Topic: Refining

(a) Mond process	(1) Ni
(b) Van-Arkel	(2) Zr
(c) Liquation	(3) Ga
(d)Zone refining	(4) Sn
Correct option is:	

A $a-(1) b-(2) c-(2) d-(4)$
B $a-(1) b-(2) c-(4) d-(3)$
C $a-(3) b-(2) c-(4) d-(1)$
D $a-(2) b-(3) c-(4) d-(1)$
Solution
Solution:- (B) $a-$ (1) $b-(2) c-(4) d-(3)$
(a) Mond process $\Rightarrow \mathrm{Ni}$
(b) Van-Arkel $\quad \Rightarrow \mathrm{Zr}$
(c) Liquation $\quad \Rightarrow \mathrm{Sn}$
(d)Zone refining $\quad \Rightarrow$ Ga

\#1612313

Topic: Vapour Pressure of Liquid Solutions and Raoult's Law
$0.6 g$ urea is added to $360 g$ water. Calculate lowering in vapor pressure for this solution
(Given: Vapour pressure of $\mathrm{H}_{2} \mathrm{O}$ is 35 mm of Hg)

A 0.027 mm of Hg

B 0.035 mm of Hg
0.017 mm of Hg

D $\quad 0.040 \mathrm{~mm}$ of Hg

Solution

Solution:- (C) 0.017 mm of Hg
$\frac{P^{0}-P s}{P^{0}}=\frac{n}{n+N}$
Lowering in V.P. $=P^{0} \times \frac{n}{n+N}$

$$
=35 \times \frac{\frac{0.6}{60}}{\frac{0.6}{60}+\frac{360}{18}}=0.017 \mathrm{~mm} \text { of } \mathrm{Hg}
$$

\#1612328

Topic: Percentage composition, empirical and molecular formula
$10 \mathrm{~m} /$ of hydrocarbon requires $55 \mathrm{~m} /$ of oxygen for complete combustion producing $40 \mathrm{~m} /$ of CO_{2}. The formula of the hydrocarbon is :

A $\quad \mathrm{C}_{4} \mathrm{H}_{6}$
B $\quad \mathrm{C}_{5} H_{10}$
C $\mathrm{C}_{4} \mathrm{H}_{8}$
D $\quad C_{4} H_{10}$

Solution

Solution:- (A) $\mathrm{C}_{4} \mathrm{H}_{6}$
$\mathrm{C}_{x} \mathrm{H}_{y}+\left(x+\frac{y}{4}\right) \mathrm{O}_{2} \rightarrow x \mathrm{CO}_{2}+\frac{y}{2} \mathrm{H}_{2} \mathrm{O}$
$10 \mathrm{ml} 55 \mathrm{ml} \quad 40 \mathrm{ml}$
$\because \frac{10}{1}=\frac{40}{x} \quad \therefore x=4$
$\because \frac{10}{1}=\frac{55}{\left(x+\frac{y}{4}\right)} \Rightarrow \frac{10}{1}=\frac{55}{\left(4+\frac{y}{4}\right)} \Rightarrow y=6$
Hydrocarbon is $\mathrm{C}_{4} \mathrm{H}_{6}$.

\#1612329

Topic: Conductance of electrolytic solutions
$S_{1} \rightarrow$ Conductivity increases on decreasing concentration of electroyte
$S_{1} \rightarrow$ Molar Conductivity increases on decreasing concentration of electroyte

A $\quad S_{1}$ is true, S_{2} is False
B Both $S_{1} \& S_{2}$ are true
C Both $S_{1} \& S_{2}$ are false
D S_{1} is false, S_{2} is true

Solution

Solution:- (D) S_{1} is false, S_{2} is true
Conductivity decreases on decreasing concentration of electroyte.
Molar conductivity increases on decreasing concentration of electroyte.

\#1612330

Topic: Isomerism in coordination compounds
In which of the following complex, cis-trans isomerism is possible?

A $\left[P t(e n)_{2} \mathrm{Cl}_{2}\right]^{2+}$
B $\quad\left[\mathrm{Cr}(\mathrm{en})_{2}(\mathrm{OX}]^{+}\right.$

C $\left[P t(e n) C_{2}\right]$
D $\left.\quad[P t e n)_{2}\right]^{2+}$

Solution

Solution:- (A) $\left[P t(e n)_{2} \mathrm{Cl}_{2}\right]^{2+}$
all other do not show geometrical isomerism.

trans

cis

\#1612331

Topic: Molecular orbital theory
In the conversion of $\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{-}$the incoming electron goes to the orbital:

A $\quad \pi^{*} 2 p x$
B $\pi_{2 p x}$
C $\sigma_{2 p z}^{*}$
D $\quad \sigma_{2 p z}$
Solution
Solution:- (A) $\pi^{*} 2 p x$
$O_{2} \Rightarrow(\sigma 1 s)^{2}\left(\sigma^{*} 1 s\right)^{2}(\sigma 2 s)^{2}\left(\sigma^{*} 2 s\right)^{2}(\sigma 2 p z)^{2}\left(\pi^{2} 2 p x=\pi^{2} 2 p y\right)\left(\pi^{* 1} 2 p x=\pi^{* 1} 2 p y\right)$
In O_{2}^{-}last electron will enter in $\pi^{*} 2 p x$ or $\pi^{*} 2 p y$ orbital

\#1612333

Topic: Quantum mechanical model of atom

Give graph is of which orbital?

A $2 p$
B $\quad 1 s$
C $2 s$
D $3 s$

Solution

Solution:- (C) 2 s
By the graph since ψ^{2} is not zero at $r=0$ it must be s orbital
also $n-P-1=1$
$n=2(\because P=0)$
it is 2 s orbital

\#1612339

Topic: Le Chatelier's Principle
(i)For a weak monobasic acid $K_{a}=10^{-5}$ vand $p H=5$ then degree of dissociation of acid is 50%
(ii) $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=0.1 \mathrm{M}$

$$
V=400 \mathrm{ml}
$$

$[\mathrm{NaOH}]=0.1 \mathrm{M}$

$$
V=400 \mathrm{ml}
$$

om mixing these solutions pH is approximately 1.3
(iii) Ionic product of water depends on temperature
(iv) Le-chatelier's principle is not applicable fro common ion effect

Select the correct options:

A (i), (ii), (iii)

B (ii), (iii)

C (i), (ii), (iV)

D (i), (iv)

Solution
Solution:- (A) (i), (ii), (iii)
$K_{a}=10^{-5} \quad\left[H^{+}\right]=10^{-5} M=c a$
$K_{a}=\frac{C \alpha^{2}}{(1-\alpha)}=\frac{c \alpha \cdot \alpha}{1-\alpha}$
$10^{-5}=10^{-5} \cdot \frac{\alpha}{(1-\alpha)} \quad \alpha=\frac{1}{2} 50 \%$
(ii) millimoles of $\mathrm{H}^{+}=0.1 \times 400 \times 2=80$
millimoles of $\mathrm{OH}^{-}=0.1 \times 400=40$
$\left[\mathrm{H}^{+}\right]=\frac{40}{800}=\frac{1}{20}=5 \times 10-2 \mathrm{pH}=1.3$
(iii) Ionic product of water $\left(K_{w}\right)$ increases with increase in temperature
(iv) Le-chatelier principle is applicable for common ion effect.

\#1612341

Topic: Nuclear chemistry
Growth of a bacteria is represented as $N(t)=N_{0} e^{\lambda t}$
After one hour a drug is given which decrease bacterial growth as $\frac{d N}{d t}=-5 N^{2}$
Which of the following graph is correct?

A

B

c

D

Solution

Solution:- (B)
Initially (befor injecting drug) number of bacteria will increase. So $\frac{N_{0}}{N}$ will decrease but after injecting drug N_{t} will decrease so $\frac{N_{0}}{N}$ will increase.

\#1612342

Topic: Nuclear chemistry
Two radioactive substance are having same initial number of nuclei. Disintegration constant of one substance is 10λ, other one is λ. After how much time of number of nuclei becomes $\frac{1}{e}$?

A $\frac{1}{9 \lambda}$
B $\frac{1}{10 \lambda}$
C $\frac{1}{11 \lambda}$
D $\frac{1}{\lambda}$
Solution
Solution:- (A) $\frac{1}{9 \lambda}$
$N_{t(I)}=N_{0 e}-10 \lambda t$
$N_{t(I I)}=N_{0} e^{-\lambda t}$
$\frac{N_{t(I)}}{N_{t(I I)}}=\frac{1}{e}=\frac{N_{0 e^{-10 \lambda t}}}{N_{0} e^{-\lambda t}}$
$e_{-}=e^{-9 \lambda t}$
$t=\frac{1}{9 \lambda}$

\#1612343

Topic: Sulphur, sulphur dioxide and sulphuric acid
Which of the follwoing does not have S - S linkage ?

A $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$
B $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
C $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$

D $\quad \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$

Solution

Solution:- $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$

\#1612345

Topic: Behaviour of real gases - Deviations from ideal behaviour

For four gases vander-waal's constants a \& b are given as following.

Gas	a $\left(p_{a}\right.$ Lit $^{2} . \mathrm{mol}^{-2}$	b $\left({\text { Lit. } \mathrm{mol}^{-1}}\right.$ A B 1550
C	450	0.0051
D	155	0.0051

Between gas A \& C which has higher volume and between gas B \& D which has higher compressibility?

A A, B
B A, D
C C, B
D
C, D
Solution
Soluton:- (C) C, B
For gases A \& C , ' b ' value is same so gas having higher value of ' a ' i,e. higher force of attraction will have lesser volume. Gas C will have higher volume
$\therefore Z=1-\frac{a}{V R T}+\frac{P b}{R T} \therefore$ gas B will be more compressible

\#1612347

Topic: Isotopes, isobars, isotones and isoelectronics
In which of the following option all are isoelectronic?

A $\quad \mathrm{N}^{3-}, \mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na}^{+}$
B $\quad N_{a}{ }^{+}, N^{-3}, F^{-}, L i^{+}$
C $\mathrm{Li}^{+}, \mathrm{N}^{3-}, \mathrm{F}^{-}, \mathrm{O}^{2-}$
D $\quad \mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{O}^{2-}, \mathrm{F}^{-}$

Solution
$\mathrm{N}^{3-}, \mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na}^{+}$are isoelectronic species each having 10 electrons.

Download other JEE Main Answer Keys from here: https://www.toppr.com/bytes/jee-main-answer-keys/

[^0]: Find the product of the given reaction.

[^1]: Major product is:

