\#1612366

Topic: Capacitance
If X is capacitance and Y is the magnetic field which are related by $X=2 a Y^{2}$. dimension of a will be:-

A $\left[M^{-1} L^{-2} T^{3} Q^{-3}\right]$
B $\quad\left[M^{-3} L^{-2} T^{4} Q^{4}\right]$
C $\left[M^{-2} L^{-1} T^{3} Q^{-3}\right]$
D $\quad\left[M^{-2} L^{-2} T^{3} Q^{-2}\right]$
Solution
$a=\frac{X}{2 Y^{2}}=\frac{\frac{Q}{V}}{2 \times\left(\frac{F}{Q_{V}}\right)^{2}}=\frac{Q^{3} v^{2}}{2 V F^{2}}$
$a=\frac{A^{3} T^{3} \times L^{2} \times T^{-2}}{2\left(\frac{M L^{2} T^{-2}}{A T}\right) \times M^{2} L^{2} t^{-4}}$
$a=\left[M^{-3} L^{-2} T^{4} Q^{4}\right]$

\#1612368

Topic: Resistance and Resistivity
Sphere of inner radius a and outer radius b is made of ρ uniform resistivity find resistance betwwen inner and outer surface

A $\frac{\rho}{4 \pi}\left(\frac{1}{a}-\frac{1}{b}\right)$
B $\quad \frac{\rho}{2 \pi}\left(\frac{1}{a}-\frac{1}{b}\right)$
C $\quad \frac{\rho}{3 \pi}\left(\frac{2}{a}-\frac{1}{b}\right)$
D $\quad \frac{\rho}{2 \pi}\left(\frac{2}{a}-\frac{1}{b}\right)$
Solution
$R=\int_{o}^{R} d R=\int_{a}^{b} \frac{\rho d r}{4 \pi_{r}^{2}}$
$R=\frac{\rho}{4 \pi}\left(\frac{1}{a}-\frac{1}{b}\right)$

\#1612369

Topic: Cyanides and isocyanides

Which of the following reagent is not used to carry out the reaction?

B LiAlH_{4}
C $\mathrm{Sn} / \mathrm{HCl}, \mathrm{NaBH}_{4}$
D $\mathrm{H}_{2} / \mathrm{Pd}$
Solution
Solution:- (C) $\mathrm{Sn} / \mathrm{HCl}, \mathrm{NaBH}_{4}$

\#1612388
Topic: Behaviour of real gases - Deviations from ideal behaviour
Pressure of 1 mole ideal is given by
$P=P_{Q}\left[1-\frac{1}{2}\left(\frac{V_{0}}{V}\right)^{2}\right]$
If volume of gas change from V to $2 V$. Find change in temperature.

A $\frac{2 P_{0} V}{R}+\frac{P_{0} V_{0}^{2}}{4 V}$
B $\frac{3 P_{0} V}{R}+\frac{P_{0} V_{0}^{2}}{4 V}$
C $\frac{P_{0} V}{4 R}+\frac{P_{0} V_{0}^{2}}{4 V}$
$D \quad \frac{P_{0} V}{R}+\frac{P_{0} V_{0}^{2}}{4 V}$
Solution
Solution:- (D) $\frac{P_{0} V}{R}+\frac{P_{0} V_{0}^{2}}{4 V}$
$\frac{n R T}{V}=P_{\mathrm{Q}}\left[1-\frac{1}{2}\left(\frac{V_{0}}{V}\right)^{2}\right]$
$T=\frac{P_{0} V}{R} V_{1}-\frac{1}{2}\left(\frac{V_{0}}{V}\right)^{2}$
$\left.T_{i}=\frac{P_{0} Y_{1}-\frac{1}{R}}{2} \frac{V_{0}^{2}}{V^{2}} \right\rvert\,$
$T_{f}=\frac{P_{0} 2 V^{1}}{R}\left(1-\frac{V_{0}^{2}}{8 V^{2}}\right)$
$\Delta T=T_{f}-T_{i}=\frac{P_{0} V}{R}+\frac{P_{0} V_{0}^{2}}{4 V}$
$\frac{n R T}{V}=P_{0}\left[1-\frac{1}{2}\left(\frac{V_{0}}{V}\right)^{2}\right]$
$T=\frac{P_{0} V}{R} V_{1}-\left.\frac{1}{2}\left(\frac{V_{0}}{V}\right)^{2}\right|^{2}$
$T_{i}=\frac{P_{0} \bigvee_{1}-\frac{1}{2}}{R}\left|\frac{V_{0}^{2}}{V^{2}}\right|$
$\left.T_{f}=\frac{P_{0} 2 丩_{1}-\frac{V_{0}^{2}}{R}}{8 V^{2}} \right\rvert\,$
$\Delta T=T_{f}-T_{i}=\frac{P_{0} V}{R}+\frac{P_{0} V_{0}^{2}}{4 V}$

\#1612401

Topic: Stress and Strain
A cylindrical wire has breaking stress of 376 MPa . If a force of 400 N is applied on wire then maximum diameter of wire such that it does not break:-

A $\quad 2.1 \mathrm{~mm}$

B $\quad 3.1 \mathrm{~mm}$
C $\quad 1.1 \mathrm{~mm}$
D $\quad 1.2 \mathrm{~mm}$

Solution

Stress $=\frac{F}{A}=\frac{400}{\pi \frac{d^{2}}{4}}=376 \times 10^{6}$
$\frac{400 \times 4}{\pi \times 376 \times 10^{6}}=d^{2}$
$d=1.16 \times 10^{-3} m$
$d=1.1 \mathrm{~mm}$
\#1612412
Topic: Torque

Find torque required so that a coin of mass 1 kg rotates 25 revolution is 5 sec starting from rest.

A $6 \pi \times 10^{-4} \mathrm{Nm}$
B $\quad 5 \pi \times 10^{-4} N m$
C $\quad 7 \pi \times 10^{-4} \mathrm{Nm}$
D $\quad 9 \pi \times 10^{-4} N m$
Solution
$25 \times 2 \pi=\frac{1}{2} \times \alpha \times 25$
$\alpha=4 \pi \mathrm{rad} / \mathrm{sec}^{2}$
$T=l \alpha$
$=\left(\frac{M_{r}^{2}}{4}+M_{r}^{2}\right) \cdot \alpha$
$=\frac{5}{4} \times 1 \times\left(\frac{1}{100}\right)^{2} \times 4 \pi$
$=5 \pi \times 10^{-4} \mathrm{Nm}$

\#1612419

Topic: Speed of Sound
A sound source is moving with speed $50 \mathrm{~m} / \mathrm{s}$ towards a fixed observer. Frequency observed by observer is 1000 Hz . Find out apparent frequency observed by observer when source is moving away from observer (speed of sound $=350 \mathrm{~m} / \mathrm{s}$)

A
750 Hz
B 950 Hz
C 550 Hz
D 350 Hz

\#1612420

Topic: LCR circuits

Find the time after which current in the circuit becomes 80% of its maximum value.

A $\frac{P n 2}{100}$
B $\frac{P n 3}{100}$
c $\frac{\operatorname{Pn5}}{100}$
D $\frac{\text { Pn } 6}{100}$
Solution

Subject: Physics | Shift 2 | 10th April 2019
$I_{s}=\frac{V}{R}=\frac{V}{0.9+0.1}=\frac{V}{1}$
$1=1 /\left(1-e^{-\frac{R}{L}}\right)$
$\left.0.8 V=\psi^{1-} e^{-\frac{1 \times t}{10 \times 10^{-3}}}\right)$
$0.8=1-e^{-100 t}$
$0.2=e^{-100 t}$
$e^{-100} t=5$
$t=\frac{P n 5}{100}$

\#1612422

Topic: Basics of Friction

There are two block as shown in the figure of masses 1 kg and 4 kg . Friction coefficient between any two surface are 0.2 then find maximum value of horizontal force F so that both blocks moves together.

A $5 N$
B $\quad 10 \mathrm{~N}$
C $\quad 15 \mathrm{~N}$
D 20 N
Solution
For 1 kg block, $a_{\max }=\frac{\mu(1) g}{(1)}=2 \mathrm{~m} / \mathrm{s}^{2}$

So $F_{\text {man }}-\left(F_{r}\right)_{\text {ground }}=m_{\text {total }} a_{\text {max }}$
$F_{\text {man }}-\mu(4+1) g=(4+1) 2$
$F_{\text {man }}=20 \mathrm{~N}$
\#1612423
Topic: Pressure in Static Fluid
A block of sided 0.5 m is 30% submerged in a liquid of density $1 \mathrm{gm} / \mathrm{cc}$. Then find mass of an object placed on block for complete submergence.

A $\quad 87.3 \mathrm{~kg}$
B $\quad 85.3 \mathrm{~kg}$
C $\quad 82.3 \mathrm{~kg}$
D $\quad 80.3 \mathrm{~kg}$

Solution

Download other JEE Main Answer Key here: https://www.toppr.com/bytes/jee-main-answer-keys/

Initial condition $B=m g$
$\rho \frac{3}{10} V g=m g . \quad \ldots$ (1)
$\rightarrow\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right) \frac{3}{10}(0.5 \mathrm{~m})^{3}=m$
$m=37.5 \mathrm{~kg}$
finally $\rho v g=(m+M) g \quad \ldots(2)$
From equation (1) \& (2)
$\frac{(m+M) g}{m g}=\frac{\rho V g}{\rho \frac{3}{10} V g}$
$1+\frac{M}{m}=\frac{10}{3}$
$\frac{M}{m}=\frac{7}{3}$
$\frac{M}{m}=\frac{7}{3}$
$M=\frac{7}{3}(37.5) \mathrm{kg}=87.3 \mathrm{~kg}$

\#1612424

Topic: Magnetic Moment
Magnetic moment of a current carrying square loop be M . If it is converted in form of circle and same current is passed through it then find the new magnetic moment.

A $\frac{M}{4 \pi}$
B $\frac{4 M}{\pi}$
C $\frac{M}{3 \pi}$
D $\frac{5 M}{6 \pi}$

Solution

Let current be $/$ and side of square is a

$$
\begin{aligned}
& M=1 \times a^{2} \\
& 4 a=2 \pi R
\end{aligned}
$$

$$
R=\frac{4 a}{2 \pi}=\left(\frac{2 a}{\pi}\right)
$$

$M^{\prime}=I \times$ Area $=I \times \pi R^{2}$

$$
\begin{aligned}
& =I \times \pi \times \frac{4 a^{2}}{\pi^{2}} \\
& =I_{a} 2 \times \frac{4}{\pi}
\end{aligned}
$$

$M^{\prime}=\frac{4 M}{\pi}$

\#1612426
Topic: Thin Lenses

The graph of magnification v / s image distance of a thin lance is given. Its focal length will be -

A $f=\frac{-a}{c}$
B $\quad f=\frac{b}{c}$
C $f=\frac{-c}{b}$
D None of these

Solution
$m=\frac{f-V}{f}$
$m=1-\frac{V}{f}$
slope $=\frac{-1}{f}$
$\frac{-1}{f}=\frac{C}{b}$
$f=\frac{b}{c}$
\#1612427
Topic: Magnetic field

A current of $10 A$ is flowing in a equilateral triangle of side length $P=1 m$ as shown in figure. The magnetic field at centre of triangle is :

A $8 \times 10^{-6} T$

B $\quad 9 \times 10^{-5} T$
C $9 \times 10^{-6 T}$
D $\quad 10^{-5} T$
Solution

Subject: Physics | Shift 2 | 10th April 2019
Magnetic field due to wire $B C$ is $\Rightarrow B=\frac{\mu_{0}}{4 \pi} \frac{i}{\rho} \times \sqrt{3}\left[\frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2}\right] \otimes$
Net magnetic field at centre $=3 B$
$=\frac{\mu_{0}}{4 \pi} \frac{i}{\rho} \times \sqrt{3}\left[\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}\right] 3 \otimes$
$=\frac{\mu_{0}}{4 \pi} \frac{i}{\rho}-3(1) 3$
$=10^{-7} \times \frac{10}{1} \times 9=9 \times 10^{-6} T$

\#1612431

Topic: Energy and Power

A particle of mass ' m ' and charge ' q ' is suspended from the ceiling with the help of an insulating wire of length ' ρ '. It is placed in an uniform electric electric field as shown in figure. Then the time period of oscillation is :

A

$$
\sqrt{\frac{\rho}{\sqrt{g^{2}+\left(\frac{q E}{m}\right)^{2}}}}
$$

B

$$
2 \pi \sqrt{\frac{\rho}{\sqrt{g^{2}+\left(\frac{q E}{m}\right)^{2}}}}
$$

C

$$
2 \pi \sqrt{\frac{\rho}{\sqrt{g+\left(\frac{q E}{m}\right)}}}
$$

D

$$
2 \pi \sqrt{\frac{\rho}{\sqrt{g^{2}-\left(\frac{q E}{m}\right)^{2}}}}
$$

Solution
$T=2 \pi \sqrt{\left|\vec{g}^{+}+\frac{q_{E}^{*}}{m}\right|}$

$$
=2 \pi \sqrt{\frac{\rho}{\sqrt{g^{2}+\left(\frac{q E}{m}\right)^{2}}}}
$$

\#1612432

Topic: Young's Modulus
A brass rod of length 1 m , area $1 \mathrm{~mm}^{2}$ and young's modulus $120 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$ is connected with steel rod of length 1 m , area 1 mm and Young's modulus $60 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$. Then the net stress so that extension of system is 0.2 mm

A $\quad 2 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$
B $\quad 4 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$
C $\quad 8 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$

D $\quad 16 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$
Solution
$Y_{\text {eq }}=\frac{\frac{\text { Stress }}{}\left(\frac{\Delta e}{\rho_{\text {eq }}}\right)}{\text { St }}$
$\frac{2 P}{Y_{e q} A}=\frac{P}{Y_{1} A}+\frac{P}{Y_{2} A}$
$Y_{e q}=\frac{2 Y_{1} Y_{2}}{Y_{1}+Y_{2}}=\frac{2 \times 120 \times 10^{9} \times 60 \times 10^{9}}{180 \times 10^{9}}$
$Y_{e q}=80 \times 10^{9}$

Stress $=Y_{e q} \frac{\Delta \rho}{\rho}=\frac{80 \times 10^{9} \times 2 \times 10^{-4}}{1 \mathrm{~m}}=16 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$

\#1612433

Topic: First Law of Thermodynamics
If Q amount of heat is given to diatomic gas at constant volume to raise its temperature by ΔT. Then for change of temperature how much amount of heat should be supplied \bar{c} constant pressure?

A $\frac{5 Q}{7}$
B $\frac{7 Q}{5}$
C $\quad Q$

D $\quad 2 Q$

Solution

Q (Heat at constant volume) $=\Delta U$
$Q=n C_{v} \Delta T=n \frac{5 R}{2} \Delta T=\Delta U$
$Q_{p}($ Heat constant pressure $)=n C_{p} \Delta T=n \frac{7 R}{2} \Delta T$
$Q_{p}=\frac{7 Q}{5}$
\#1612435
Topic: Angular Momentum
A particle moves in space such that its position vector varies as vecr $=2 \hat{t}_{j}+3 t^{2} j$. If mass of particle is 2 kg then angular momentum of particle about origin at $t=2$ sec is :

A $12 \hat{k}$
B $48 \hat{k}$
C $\quad 36 \hat{k}$

D $\quad 24 \hat{k}$

Solution

Download other JEE Main Answer Key here: https://www.toppr.com/bytes/jee-main-answer-keys/
$\vec{L}=m\left(r_{r} \times \vec{v}\right)$
$\vec{v}=2 \hat{i}+6 \hat{f}_{j}$
$\vec{v}=2 \hat{i}+12 \hat{j}$ at $t=2 \mathrm{sec}$
$\vec{L}=2\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 4 & 12 & 0 \\ 2 & 12 & 0\end{array}\right|=2(12 \times 4-12 \times 2) \hat{k}$
$\vec{L}=48 \hat{k}$

\#1612436

Topic: Basics of Projectile Motion
A projectile is projected upward with speed $2 \mathrm{~m} / \mathrm{s}$ on an incline plane of inclination 30° at an angle of 15° from the plane. Then the distance along the plane where projectile w fall is :

A $\frac{4}{15}$
B $\quad \frac{4}{5}\left(\frac{1}{\sqrt{3}}+\frac{1}{3}\right)$
C $\quad \frac{4}{5}\left(\frac{1}{\sqrt{3}}-\frac{1}{3}\right)$
D $\quad \frac{4}{\sqrt{3}}\left(\frac{1}{\sqrt{3}}-\frac{1}{3}\right)$

Solution

On inclined plane (range) $R=\frac{2 U^{2} \sin \alpha \cos (\alpha+\beta)}{g \cos ^{2} \beta}$

Where $\alpha=15^{\circ}, \beta=30^{\circ}, U=2 \mathrm{~m} / \mathrm{s}$

On solving we get, $R=\frac{4}{5}\left(\frac{1}{\sqrt{3}}-\frac{1}{3}\right)$
\#1612437
Topic: Moment of Inertia of Common Bodies
A solid sphere of mass m \& radius R is divided in two parts of masses $\frac{7 m}{8} \& \frac{m}{8}$, and converted to a disc of radius $2 R \&$ solid sphere of radius 'r' respectively. Find $\frac{l_{1}}{I_{2}}$. If $I_{1} \& I_{2}$ art moment of inertia of disc \& solid sphere respectively.

A 160
B $\quad 140$
C 240
D 120
Solution

IDisc $=\frac{7 m}{8} \frac{(2 R)^{2}}{2}=I_{1}$

For solid sphere
$\frac{m}{8}=\left(\frac{4}{3} \pi r^{3}\right) \rho$
$\frac{\rho\left(\frac{4}{3} \pi R^{3}\right)}{8}=\frac{4}{3} \pi_{r}{ }^{3} \rho$
$\frac{R}{2}=r=$ Radius of solid sphere (s.s)
$I_{s s}=\left(\frac{M}{8} r^{2}\right) \frac{2}{5}$
$=\frac{M}{8}\left(\frac{R}{2}\right)^{2} \frac{2}{5}=I_{2} ; \quad$ So that $\frac{I_{1}}{I_{2}}=\frac{\frac{7 M(2 R)^{2}}{8} \frac{2}{2}}{\frac{2}{8}\left(\frac{R}{2}\right)^{2}}=140$

\#1612438

Topic: Interference
In YDSE ratio of width of slit is $4: 1$, then ratio of maximum to minimum intensity

B 27

C 3

D 81

Solution
$I \propto W$
$\frac{l_{1}}{I_{2}}=\frac{4}{1}$
$\frac{I_{\text {max }}}{I_{\text {min }}}=\left(\frac{\sqrt{I_{1}}+\sqrt{I_{2}}}{\sqrt{\bar{I}_{1}}-\sqrt{I_{2}}}\right)^{2}=\left(\frac{\sqrt{\overline{1_{1} / I_{2}}+1}}{\sqrt{\sqrt{I_{1} / I_{2}}-1}}\right)^{2}=\left(\frac{\sqrt{4}+1}{\sqrt{4}-1}\right)^{2}=\left(\frac{2+1}{2-1}\right)=\left(\frac{3}{1}\right)=\frac{9}{1}$

\#1612439

Topic: Electrostatic Potential

Two charge particle P \& Q having same charge $1 \mu C$ and mass $4 \mu k g$ are initially kept at the distance of 1 mm . Charge P is fixed, then the velocity of charge particle Q when the separation between them becomes 9 mm .

A $\quad 3 \times 10^{3} \mathrm{~m} / \mathrm{s}$
B $\quad 2 \times 10^{3} \mathrm{~m} / \mathrm{s}$
C $\quad 5 \times 10^{3} \mathrm{~m} / \mathrm{s}$
D $\quad 7 \times 10^{3} \mathrm{~m} / \mathrm{s}$

Loss in $P E=$ gain in $K E$
$K \times 10^{-6} \times 10^{-6}\left[\frac{1}{10^{-3}}-\frac{1}{9 \times 10^{-2}}\right]=\frac{1}{2} m v^{2}$
$9 \times 10^{9} \times \frac{10^{-6} \times 10^{-6}}{10^{-3}} \times \frac{8}{9}=\frac{1}{2} \times 4 \times 10^{-6} \times v^{2}$
$V=2 \times 10^{3} \mathrm{~m} / \mathrm{s}$

\#1612447

Topic: Zener Diode

In the circuit diagram of zener diode as shown in figure, when the value of V_{0} is 8 volt, the current through zener diode $\mathrm{s} i_{1}$ and when V_{0} is 16 volt, the corresponding current is i_{2}. Find the value of $\left(i_{2}-i_{1}\right)$. (Zener breakdown voltage $\left.=v_{2}=6 \mathrm{~V}\right)$

A zero
B $\quad 5.0 \mathrm{~mA}$
C $\quad 1.5 \mathrm{~mA}$
D 8 mA
Solution
For $V_{0}=8$ Volt
$i_{0}=\frac{8-6}{1000}=2 \mathrm{~mA} ; i_{2}=\frac{6}{4000}=1.5 \mathrm{~mA}$
$\therefore i_{1}=(2-1.5)=0.5 \mathrm{~mA}$
for $V_{0}=16 \mathrm{Volt} ; i_{0}^{\prime}=\frac{10}{1000}=10 \mathrm{~mA}^{\prime} i_{2}^{\prime}=1.5 \mathrm{~mA}$
$\therefore i_{1}^{\prime}=10-1.5=8.5 \mathrm{~mA}$
$\Rightarrow i_{1}^{\prime}-i_{1}=8 \mathrm{~mA}$

\#1612449
Topic: Satellites

Subject: Physics | Shift 2 | 10th April 2019

A Satellite is revolving around a planet having mass $M=8 \times 10^{22} \mathrm{~kg}$ and radius $R=2 \times 10^{6} \mathrm{~m}$ as shown in figure. Find the number of revolutions made by the satellite around th planet in 24 hours.

A 9
B $\quad 10$
C $\quad 11$
D
12
Solution
$T=2 \pi \sqrt{\frac{R^{3}}{G M}}=2 \pi \sqrt{\frac{8 \times 10^{18}}{\frac{20}{3} \times 10^{-11 \times 8 \times 10^{22}}}}=7800 \mathrm{sec}$.

Number of revolutions $=\frac{24 \times 3600}{7800}=11.07=11$

\#1612450

Topic: First Order Radioactive Decay
Two radioactive materials have decay constants $5 \lambda \& \lambda$.If Initially they have same no. of nuclei. Find time when ratio of nuclei become $\left(\frac{1}{e}\right)^{2}$:
A $\frac{1}{2 \lambda}$
B $\frac{1}{\lambda}$
C $\frac{2}{\lambda}$
D $\frac{1}{4 \lambda}$
Solution
$\frac{N_{1}}{N_{2}}=\frac{N_{0 e^{-5 \lambda \times t}}}{N_{0 e^{-\lambda t}}}=\frac{1}{e^{2}}$
$e^{-4 \lambda t}=\frac{1}{e^{2}}$
$-4 \lambda t=-2$
$t=\frac{1}{2 \lambda}$

\#1612451

Topic: Superposition and Interference
Two sound sources of frequency 9 Hz and 11 Hz are sounded together then which plot is correct after superposition of sound waves.

Subject: Physics | Shift 2 | 10th April 2019
B

c

D

Solution
$f_{b}=(11-9)=2 \mathrm{~Hz}$
$T_{b}=\frac{1}{2} \mathrm{sec} .=0.5 \mathrm{sec}$

\#1612454

Topic: Efflux and Torricelli's Law
Water is flowing continuously from a tap of area $10^{-4} \mathrm{~m}^{2}$. The water velocity as it leaves the top is $1 \mathrm{~m} / \mathrm{s}$.
Find out area of the water stream at a distance 0.15 m below the top.

A $0.5 \times 10^{-4} \mathrm{~m}^{2}$
B $\quad 1 \times 10^{-4} m^{2}$
C $\quad 2 \times 10^{-4} m^{2}$
D $\quad 0.25 \times 10^{-4} \mathrm{~m}^{2}$
Solution
$A_{1} V_{1}=A_{2} V_{2}$
$v_{2}=\sqrt{v_{1}^{2}+2 g h}$
$v_{2}=\sqrt{1^{2}+2 \times 10 \times 0.15}$
$V_{2}=2 \mathrm{~m} / \mathrm{s}$
$10^{-4 \times 1}=A_{2} \times 2$
$A_{2}=0.5 \times 10^{-4} \mathrm{~m}^{2}$.

\#1612471

Topic: Atomic Spectra and Spectral Series
$L i^{2+}$ is initially in ground state. when radiation of wavelength λ_{0} incident on it, it emits 6 different wavelengths during de-excitation. Find λ_{0}.

A $1230^{\circ} \AA$
B $\quad 520 \AA$
C $970{ }_{A}^{\circ}$
D $1480{ }^{\circ}$
Solution
$6=\frac{n(n-1)}{2} \Rightarrow n=4$
$\frac{1}{\lambda}=R 2\left[\frac{1}{1^{2}}-\frac{1}{4^{2}}\right]=1.097 \times 10^{7}\left[\frac{1}{1}-\frac{1}{16}\right]$
$\lambda=970 \AA$

\#1612476

Topic: Moment of Inertia of Common Bodies
A solid sphere of mass $M \&$ radius R is divided in two parts of masses $\frac{7 M}{8} \& \frac{M}{8}$, and converted to a disc of radius $2 R \&$ solid sphere of radius 'r' resp. Find $\frac{I_{1}}{I_{2}}$, if $I_{1} \& I_{2}$ are moment of inertia of disc \& solid sphere respectively.

A 200
B 140
C 120
D 180
Solution
$I_{\text {Disc }}=\frac{7 m}{8} \frac{(2 R)^{2}}{2}=I_{1}$
Solid sphere
$\frac{M}{8}=\left(\frac{4}{3} \pi r^{3}\right) \rho$
$\frac{\rho\left(\frac{4}{3} \pi r^{3}\right)}{8}=\frac{4}{3} \pi r^{3} \rho$
$\frac{R}{2}=r=$ radius of solid sphere
Iss $=\left(\frac{M}{8} r^{2}\right) \frac{2}{5}$
$=\frac{M}{8}\left(\frac{R}{2}\right)^{2} \frac{2}{5}=I_{2}$;
So that $\frac{I_{1}}{I_{2}}=\frac{\frac{7 M(2 R)^{2}}{8}}{\frac{2}{5} \frac{M}{8}\left(\frac{R}{2}\right)^{2}}=140$
\#1612478
Topic: Photons and Photoelectric Effect
A beam of light incident on a surface has photons each of energy 1 mJ and intensity $25 \mathrm{w} / \mathrm{cm}^{2}$. Find number of photons incident per second if surface area is $25 \mathrm{~cm}^{2}$.

A $\quad 6.25 \times 10^{5} s^{-1}$

B $\quad 8.25 \times 10^{5} s^{-1}$

C $\quad 6.25 \times 10^{4} \mathrm{~s}^{-1}$

D $\quad 5.25 \times 10^{5} s^{-1}$
Solution

$$
\begin{aligned}
& I \times A=n \times \text { Energy of each photon } \\
& n=\frac{I A}{\text { energy of each photon }} \\
& \frac{25 \times 25}{1} \times 10^{-3} \\
& =6.25 \times 10^{-5} \mathrm{JS}^{-1}
\end{aligned}
$$

\#1612495

Topic: Kinetic Friction

A particle of mass 20 gm is moving with velocity $1 \mathrm{~m} / \mathrm{s}$. it penetrates 20 cm wooden block(fixed) with average force $2.5 \times 10^{-2} \mathrm{~N}$. Find out speed particle when it come out from block.

A $\quad \frac{1}{\sqrt{3}} \mathrm{~m} / \mathrm{s}$
B $\quad \frac{1}{5} \mathrm{~m} / \mathrm{s}$
C $\frac{1}{2} \mathrm{~m} / \mathrm{s}$
D $\quad \frac{1}{7} \mathrm{~m} / \mathrm{s}$

Solution

F. $x=\frac{1}{2} m V_{f}^{2}-\frac{1}{2} m V_{f}^{2}$
$\Rightarrow-2 \times 10^{-2} \times 02=\frac{1}{2} \times 20 \times 10^{-3}\left(V_{f}^{2}-1^{2}\right)$
$\Rightarrow-0.5=v_{f}^{2}-1^{2}$
$v_{f}^{2}=0.5$
$V_{f}=\frac{1}{\sqrt{2}} \mathrm{~m} / \mathrm{s}$

