#1612369

Topic: Cyanides and isocyanides

Which of the following reagent is not used to carry out the reaction?

- A H_2/Ni
- B LiAIH₄
- C Sn/HCl, NaBH₄
- $D H_2/Pd$

Solution

Solution:- (C) Sn/ HCl, NaBH₄

#1612370

Topic: Chemical properties of aldehydes and ketones

$$CH_3 \xrightarrow{(1) \text{ NaOCl}} A \xrightarrow{(i) \text{ SOCl}_2} (X)$$

Identify the major product (x) of given reaction:-

Solution:- (A)

#1612371

Topic: Monosaccharides

The number of chiral carbon atom present in open chain and cyclic form glucose is:

A 3, 2

B 4, 5

C 5, 5

6, 5

Solution

D

Solution:- (B) 4, 5

Open chain structure of glucose has four chiral carbon atoms (fig.1)

Cyclic structure of glucose has five chirl carbon atoms (fig.2)

α−D− Glucopyranose

#1612382

Topic: Smog

Which of the following pollution takes place in sunlight?

A Acid rain

B Reducing smog

C Fog

D Oxidizing smog

Solution

Solution:- (D) Oxidising smog

 $\label{polynomial} \mbox{Pollution take place in sunlight is oxidizing smog , which is knows as photochemical smog.}$

#1612384

Topic: Classification of organic compounds

Which of the following is not responsible for stability of acyclic hydrocarbon?

A Trosional strain

B Angle strain

D Vander waal's strain

Solution

Solution:- (B) Angle strain

Angle strain is found in cyclic compound

#1612388

Topic: Behaviour of real gases - Deviations from ideal behaviour

Pressure of 1 mole ideal is given by

$$P = P_0 \left[1 - \frac{1}{2} \left(\frac{V_0}{V} \right)^2 \right]$$

If volume of gas change from $\it V$ to $\it 2\it V$. Find change in temperature.

$$\mathbf{A} \qquad \frac{2P_0V}{R} + \frac{P_0V_0^2}{4V}$$

$$B = \frac{3P_0V}{R} + \frac{P_0V_0^2}{4V}$$

$$C \qquad \frac{P_0 V}{4R} + \frac{P_0 V_0^2}{4V}$$

$$\boxed{\mathbf{D}} \frac{P_0 V}{R} + \frac{P_0 V_0^2}{4 V}$$

Solution:- (D)
$$\frac{P_0 V}{R} + \frac{P_0 V_0^2}{4V}$$

$$\frac{nRT}{V} = P_0 \left[1 - \frac{1}{2} \left(\frac{V_0}{V} \right)^2 \right]$$

$$T = \frac{P_0 V}{R} \left(1 - \frac{1}{2} \left(\frac{V_0}{V} \right)^2 \right)$$

$$T_i = \frac{P_0 V}{R} 1 - \frac{1}{2} \frac{V_0^2}{V^2}$$

$$T_f = \frac{P_0 2 V}{R} 1 - \frac{V_0^2}{8 V^2}$$

$$\Delta T = T_f - T_i = \frac{P_0 V}{R} + \frac{P_0 V_0^2}{4V}$$

$$\frac{nRT}{V} = P_0 \left[1 - \frac{1}{2} \left(\frac{V_0}{V} \right)^2 \right]$$

$$T = \frac{P_0 V}{R} \left(1 - \frac{1}{2} \left(\frac{V_0}{V} \right)^2 \right)$$

$$T_{i} = \frac{P_{0} V}{R} 1 - \frac{1}{2} \frac{V_{0}^{2}}{V^{2}}$$

$$T_f = \frac{P_0 2 V}{R} 1 - \frac{V_0^2}{8 V^2}$$

$$\Delta T = T_f - T_i = \frac{P_0 V}{R} + \frac{P_0 V_0^2}{4 V}$$

#1612392

Topic: Some commercially important polymers

The correct match for given in column B is

Sr.No	Column I	Sr.No	Column II
1	Nylon -6	а	Zeigler Natta catalyst
2	Novolac	b	Peroxide catalyst
3	High-density polythene	C.	Condensation at high T and P
4	Polyacrylonitrile	d.	catalyzed by an acid base.

Solution

Solution:- (C) 1 - c, 2 - d, 3 - a, 4 - b

 $\hbox{ nylon-6 is condensation polymer of caprolactum,} \hbox{at higher temperature and pressure.} \\$

Novolac is obtained by acid or base catalyzed polymerization of phenol and formal ehyde.

Polyarylonitrile is obtained by acrylonitrile using peroxide as catalyst.

#1612394

Topic: Chemical reactions of ethers

Product is:-

Solution

Solution:- (A)

#1612399

Topic: Purification of organic compounds

Which of the following is incorrect for Rf?

- A Rf value depends on the type of chromatography
- B Value of Rf is always between 0 to 1
- C Greater the absorption,greater will be Rf value
- D Rf is independent of mobile carries

Solution

Solution:- (C) Greater the absorption, greater will be $\it Rf$ value

Low polarity compounds are weekly adsorbed and has greater Rf value.

#1612403

Topic: Fundamental concepts of organic reaction mechanism

The correct nucleophilicity order of given species is:

A a > d > b > c

B d > a > b > c

 $C \qquad c > a > b > d$

 $D \qquad b > a > c > d$

Solution

Solution:- (B) d > a > b > c

#1612406

Topic: Chemical reactions of haloalkanes - Elimination reactions

The major product of the given reaction is:

Solution

Solution:- (A)

#1612407

Topic: Methods of preparation of carboxylic acids

A compound x givens iodoform test. It reacts with $KMnO_4$, which on heating gives anhydride. The anhydride is used in the preparation of phenolphthalein. The compound x is:

$$\begin{array}{c|c} A & & & \\ & & & \\ & & & \\ &$$

D
$$CH_3$$

Solution:- (C)

#1612408

Topic: Carbon

No of pentagons in \mathcal{C}_{60} and trigons (triangles) in white phosphorus, respectively is:

Α 12, 3

В

12, 4

С 20, 3

D 20, 4

Solution

Buckminster Fullerene is an allotrope of carbon which has formula C_{60}

It consists of pentagonal and hexagonal rings.

No of pentagons in C_{60} = 12

No of Triangle in white P = 4

#1612410

Topic: Actinoids

Maximum oxidation state of uranium and plutonium are respectively:

4 and 6 Α

В 5 and 6

С 6 and 7

D 6 and 8

Solution

Solution:- (C) 6 and 7

Uranium has maximum oxidation number = +6

Plutonium has maximum oxidation number = +7

#1612411

Topic: Elevation in boiling point

1g of same non volatile solute is added to 100g o two different solvents A and B K_b of A:B=1:5

find out $\frac{(\Delta T_b)_A}{(\Delta T_b)_B}$

1:10

В

1:5

C 1:20

D 2:5

Solution

Solution:- (B) 1:5

$$(\Delta T_b)_A = (K_b)_A \times m_A$$

$$(\Delta T_b)_B = (K_b)_B \times m_B$$

$$\frac{(\Delta T_b)_A}{(\Delta T_b)_B} = \frac{1}{5} \times \frac{\frac{1}{M.W} \times \frac{1000}{100}}{\frac{1}{M.W} \times \frac{1000}{100}} = \frac{1}{5}$$

#1612415

Topic: Different types of heats/enthalpies of reaction

What is the value of $\Delta H - \Delta U$ for the combustion of Heptane (I) ?

A -4RT

B -3*RT*

C 4RT

D 3RT

Solution

Solution:- (A) -4RT

 $C_7 H_{16}(1) + 11 O_2(g) \rightarrow 7 C O_2(g) + 8 H_2 O(1)$

 $\Delta n_g = 7 - 11 = -4$

 $\Delta H = \Delta U + \Delta n_g RT$

 $\Delta H - \Delta U = -4RT$

#1612416

Topic: Introduction to Inert gases - group 18 Elements

Which of the following noble gas is not present in atmosphere?

A He

B Ne

C Kr

D Rn

Solution

Solution:- (D) Rn

Radon is not naturally occurring in atmosphere

#1612417

Topic: Mole and equivalent weight

In which of the following minimum amount of \mathcal{O}_2 is required per gram of reactant?

A
$$P_4 + 5O_2 \rightarrow P_4O_{10}$$

$$B \qquad 2Mg + O_2 \rightarrow 2MgO$$

C
$$2Fe + 3O_2 \rightarrow 2FeO_3$$

D
$$C_3H_8 + 50 \Rightarrow 3CO_2 + 4H_2O$$

Solution

Solution:- (B) $2Mg + O_2 \rightarrow 2MgO$

Per gram Mg, O_2 required = $\frac{1}{48}$ mole

#1612428

Topic: Crystal field theory

Find CFSE of $[Fe(H_2O)_6]^{2+}$ and $[NiCI_4^-]^{2-}$.

$$-0.4\Delta_0$$
 and $-0.8\Delta_t$

$$-0.4\Delta_0$$
 and $-1.6\Delta_t$

$$-0.8\Delta_0$$
 and $-0.4\Delta_t$

D
$$-1.2\Delta_0$$
 and $-1.2\Delta_t$

Solution

Solution:- (A) $-0.4\Delta_0$ and $-0.8\Delta_t$

$$[Fe(H_2O)_6]^{2+}$$

$$Fe^{+2} \rightarrow [Ar]3d^3$$

$$H_2O
ightharpoonup ext{weak field ligand,so pairing so not take place } t_{2q}^{2,1,1}$$

$$\textit{CFSE} = -0.4 \times 4\Delta_0 + 0.6 \times 2\Delta_0 = -0.4\Delta_0$$

 $[NiCl_4]^2$

$$N_i^{+2} \rightarrow [Ar]3_d^8$$

 \mathcal{C}_{I^-} ightharpoonup weak field ligand,so pairing do not take place and have tetrahedral geometry

 $eg^{2,2}$

$$CFSE = -0.6 \times 4\Delta_t + 0.4 \times 4\Delta_t = -2.4\Delta_t + 1.6\Delta_t = -0.8\Delta_t$$

#1612429

Topic: Conductance of electrolytic solutions

Which of the following graph is correct?

Solution:- (C)

 N_{∂}^{+} is more hydrated with respect to K^{+} therefore KCI electrolyte have higher Λ_{M} with respect to NaCl.

#1612430

Topic: Study of d-Block elements

The correct order of 1st ionisation enthalpy is :

Α

В

С

D

Solution

Solution:- (A) Ti

Ionisation enthalpy

Ti = 656

Mn = 717

Ni = 736

Zn = 906 KJ/mole

Moving left to right

#1612444

Topic: Temperature, catalyst and activation energy of reactions

Rate constant for a reaction are 2.5×10^{-4} atm and 1_{atm} at temperature $327^{\circ}C$ and $527^{\circ}C$ respectively. Calculate activation energy in KJ. (Given $R = 8.314 Jmoi^{-1}K^{-1}$)

166*KJ*

B −257*KJ*

C 120*KJ*

D 70*KJ*

Solution

Solution:- (A) 166 KJ

$$ln\frac{P_2}{P_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

 $T_1 = 600k$

$$T_2 = 800K$$

$$P_1 = 2.5 \times 10^{-4}$$

$$P_2 = 1atm$$

$$ln\frac{1}{2.5\times10^{-4}} = \frac{E_a}{8.314} \left(\frac{1}{600} - \frac{1}{800} \right)$$

$$E_a = 166KJ$$

#1612453

Topic: Kinetic energy and molecular speeds

Graph \emph{I} , \emph{II} and \emph{III} are respectively:

- N_2 at 300 K, H_2 at 300 K, O_2 at 400 K Α
- O_2 at 400 K, N_2 at 300 K H_2 at 300 kВ
- С H_2 at 300 K, N_2 at 300 K O_2 at 400 K
- D N_2 at 300 K, O_2 at 400 K, H_2 at 300 K

Solution

solution:- (D) N_2 at 300 K, O_2 at 400 K , H_2 at 300 K

$$U_{mps} = \sqrt{\frac{2RT}{M}}$$

$$U_{mps} \propto \sqrt{\frac{T}{M}}$$

for
$$N_2$$
 at 300 K, $U_{mps} \propto \sqrt{\frac{T}{M}} \propto \sqrt{\frac{300}{28}}$

for
$$O_2$$
 at 400 K, $U_{mps} \propto \sqrt{\frac{T}{M}} \propto \sqrt{\frac{400}{32}}$

For
$$H_2$$
 at $300 \, \text{K}$, $U_{mps} \propto \sqrt{7} M \propto \sqrt{\frac{300}{2}} = \sqrt{150}$

#1612457

Topic: pH

 P^H of 0.02M NH_4CI solution is:

В 4.35

С 9.65

D 10.65

Solution

Solution:- (A) 5.35

$$p^{H} = 7 - \frac{1}{2}PK_{b} - \frac{1}{2}\log C$$
$$= 7 - \frac{5}{2} - \frac{1}{2}(\log 2 \times 10^{-2})$$

= 5.35

#1612460

Topic: Carbon

The water gas when used for the formation of methanol is called:

Α Fuel gas

В Syn gas

С Natural gas

D Producer gas

Solution

Solution:- (B) Syn gas

$$CO + 2H_2 \xrightarrow{5-10atm} CH_3OH$$

$$250^{\circ}C$$

#1612464 Topic: Carbon				
Whic	h of the following is the correct order regarding catenation properly?			
Α	Si > C > S > P			
В	C > Si > P > S			
С	C > Si > S > P			
D	C > S > Si > P			
Solut	ion			
Solut	ion:- (B) $C > Si > P > S$			
The s	size of carbon atom is small and as a result, a strong C – C bond is formed. Hence, any number of carbon atoms can be linked to each other by covalent bonds.			
As w	e move down the group the atomic size increases and the strength of bonds decreases. Therefore, down the group catenation power decreases.			
#1612	2475			
Topic	;; Colloidal state of matter			
Whic	h of the statement is correct?			
Α	Brownian motion of colloidal particles does not depend on the size of particles			
В	Adsorption is endothermic process			
С	Colloidal medicines are better because of their small surface area.			
D	Electrophoresis can be used for ppt of lyophibic colloid			

Solution

Solution:- (D) Electrophoresis can be used for ppt of lyophibic colloid

A.Brownian motion of colloidal particles depend on the size of particles

B.Adsorption is exothermic process

 $\hbox{C.Colloidal medicines are better because of their large surface area.}\\$

 $\hbox{D.Electrophores is can be used for ppt of lyophobic colloid.}\\$