\#1612972

Topic: Gas Laws
2 mole ideal He gas and 3 mole ideal H_{2} gas at constant volume find out C_{v} of mixture

A $\frac{21 R}{10}$
B $\frac{11 R}{10}$
C $\frac{21 R}{5}$
D $\frac{11 R}{5}$

Solution

The given mixture of two moles of monoatomic gas mixed with three mole of diatomic gas can be given as
$C=\frac{n_{1} C_{v_{1}}+n_{2} C_{v_{2}}}{n_{1}+n_{2}}$
$=\frac{2 \times \frac{3}{2} R+3 \times \frac{5}{2} R}{2+3}$
$=\frac{3 R+15 \frac{R}{2}}{5}=\left(\frac{21 R}{10}\right)$

\#1613008

Topic: Atomic Spectra and Spectral Series
He^{+}is in $n^{\text {th }}$ state. It emits two successive photons of wavelength $103.7 n m$ and $30.7 n m$, to come to ground state the value of n is:

A 4

B 5

C 6

D 7

Solution

To find the wavelength in eV we must multiply the given formula by 1240
Thus we get,
$E_{\text {total }}=\left(\frac{1240}{103.7}+\frac{1240}{30.7}\right) \mathrm{eV}=52.34 \mathrm{eV}$
$52.34 e V=13.6 \times 4\left(1-\frac{1}{n^{2}}\right)$
$n^{2}=25$
$n=5$

\#1613013

Topic: Refraction at Spherical Surfaces

Water is filled in a container upto a height of 5 cm . There is a concave mirror of radius of curvature 40 cm .A person just above the surface observes images of ' A '. The distance ,
image from water surface is $\left(\mu_{\text {water }}=1.33\right)$:

B $\quad 7.8 \mathrm{~cm}$

C 6.8 cm

D $\quad 5.4 \mathrm{~cm}$

Solution

Reflection from mirror
$\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$
$\frac{1}{v}+\frac{1}{-5}=\frac{1}{20} \quad \because(f=-20 \mathrm{~cm})$
$v=\frac{20}{3} \mathrm{~cm}$
Refraction from water surface,
$\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=0$
$\frac{1}{v}-\frac{1.33}{-\left(\frac{35}{3}\right)}=0$

$$
v=-\frac{35}{3 \times 1.33}=-8.8 \mathrm{~cm}
$$

\#1613020

Topic: Specific Heat Capacities
m_{1} gram of ice at -10° and m_{2} gram of water at $50^{\circ} \mathrm{C}$ are mixed in insulated container.if in equilibrium state we get only water at $0^{\circ} \mathrm{C}$ then latent heat ice is:

A $\quad \frac{50 m_{2}}{m_{1}}+5$
B $\frac{50 m_{2}}{m_{1}}-5$
C $\frac{50 m_{2}}{m_{1}}+50$
D $\frac{50 m_{2}}{m_{1}}-50$

Solution

heat taken by ice $=$ heat given by water
$m_{1} S_{i c e}(10)+m_{1}=m_{2} S_{w}(50)$
$\Rightarrow \frac{m_{1}}{2} \times+m_{1} L_{f}=m_{2} \times 50$
$\Rightarrow 5+L_{f}=50 \frac{m_{2}}{m_{1}}$
$\Rightarrow L_{f}=\frac{50 m_{2}}{m_{1}}-5$

\#1613056

Topic: Moment of Inertia of Common Bodies
Mass per unit area of a disc of inner radius 'a' and outer radius 'b' is given by $\left(\frac{\sigma_{0}}{r}\right)$, r distance from center. Its radius of gyration w.r.t. axis of rotation passing through center and perpendicular to plane is

A $\sqrt{\frac{b^{4}-a^{4}}{3\left(b^{2}-a^{2}\right.}}$

B $\sqrt{\frac{b^{3}-a^{3}}{3(b-a)}}$

C $\sqrt{\frac{b^{3}-a^{3}}{5(b-a)}}$

D

$$
\sqrt{\frac{b^{4}-a^{4}}{5\left(b^{2}-a^{2}\right.}}
$$

Solution

$I=\int d m \cdot r^{2}$
$I=\int_{a}^{b} \frac{\sigma_{0}}{r} 2 \pi r d r . r^{2}$
$I=\sigma_{0} 2 \pi\left(\frac{b^{3}-a^{3}}{3}\right)$
$M=\int_{a}^{b} d m={ }_{a}^{b_{a}}\left[\frac{\sigma_{0}}{r} 2 \pi r d r\right]=\sigma_{0} 2 \pi(b-a)$
$I=M K^{2}$
$\sigma_{0} 2 \pi\left(\frac{b^{3}-a^{3}}{3}\right)=\sigma_{0} 2 \pi(b-a) K^{2}$
$K=\sqrt{\frac{b^{3}-a^{3}}{3(b-a)}}$

\#1613100

Topic: Resistance and Resistivity

A galvanometer has 50 division, current per unit deflection id $20 \mu A$ and resistance of coil of galvanometer is 100Ω. Find the value of resistance R_{1}, R_{2} and R_{3} if its range as a voltmeter when used between A and P_{1}, is $(0,-2 V)$ between A and P_{2} is $(0-10 \mathrm{~V})$ and between A and P_{3} is $(0-20 \mathrm{~V})$

A $1900 \Omega, 800 \Omega, 10000 \Omega$
B $1900 \Omega, 4000 \Omega, 8000 \Omega$
C $19000 \Omega, 8800 \Omega, 12000 \Omega$
D $12000 \Omega, 8800 \Omega, 19000 \Omega$
Solution
$I_{G}=20 \times 50 \mu A=1 \mathrm{~mA}$
$I_{G}\left(100+R_{1}\right)=2$
$R_{1}=1900 \Omega$
$I_{G}\left(100+R_{1}+R_{2}\right)=10 \mathrm{~V}$
$R_{2}=8000 \Omega$
$I_{G}\left(100+R_{1}+R_{2}+R_{3}\right)=20$
$R_{3}=10000 \Omega$

\#1613104

Topic: Basics of Projectile Motion
Two projectiles are thrown with same speed in such a way that their ranges are equal.If the time of flight for the two projectiles are t_{1} and t_{2} the value of $t_{1} t_{2}$ in terms of range ' R ' and ' g ' is

A $\frac{R}{g}$
B $\frac{2 R}{g}$
C $\frac{R}{2 g}$
D $\frac{R}{4 g}$

Solution

$t_{1}=\frac{2 u \sin \theta_{1}}{g}$
$t_{2}=\frac{2 u \sin \theta_{2}}{g}$
$t_{1} t_{2}=\frac{4 u^{2}}{g^{2}} \sin \theta_{1} \sin \theta_{2} \quad \because$ range are equal
$\theta_{2}=90^{\circ}-\theta_{1}$
$\because t_{1} t_{2} \frac{2}{g} \frac{2 u^{2} \sin \theta_{1} \cos \theta_{1}}{g}=\frac{2 R}{g}$

\#1613113

Topic: Magnetic Moment

A $\frac{p}{4 p \varepsilon_{0} d^{3}} \hat{i}, 0$
B $\frac{-p}{4 p \varepsilon_{0 d^{3}}} \hat{i}, 0$
C $\frac{2 p}{4 p \varepsilon_{0} d^{3}} \hat{i}, 0$
D $\frac{-2 p}{4 p \varepsilon_{0} d^{3}} \hat{;}, 0$

Solution

Clearly it is the axial position
$\vec{E}=-\frac{k \vec{p}}{r^{3}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{p}{r^{3}} \hat{i}$
put $r=d$
$\vec{E}=-\frac{p}{4 \pi \varepsilon_{0 d}{ }^{3}} \hat{i} \Rightarrow V=0$

\#1613114

Topic: Musical sound and scale
Submarine A is going with speed of $18 \mathrm{~km} / \mathrm{hr}$. Submarine B is chasing A with speed of $27 \mathrm{~km} / \mathrm{hr}$.lt sends frequency of 500 Hz and hears after reflection from A. The perceived frequency is:

A 500 Hz
B 502 Hz
C 498 Hz

D 504 Hz

Solution

By using Doppler effect,
Frequency received by $A, f_{A}=f_{0}\left(\frac{1500-5}{1500-7.5}\right)$
Frequency of reflected sound perceived by $B=f_{A}\left(\frac{1500+7.5}{1500+5}\right)=500\left(\frac{1500-5}{1500+7.5}\right)\left(\frac{1500+7.5}{1500+5}\right)=501.699 \cong 502 \mathrm{~Hz}$

\#1613121

Topic: Electric Field
The electric field is space given by $\vec{E}=E_{0} \sin (\Omega t+6 y-8 z) \hat{n}$ then the direction of propagation of light wave is

A $\frac{-3 \hat{j}-4 \hat{k}}{5}$
B $\frac{-3 \hat{j}+4 \hat{k}}{5}$
C $\frac{-3 \hat{j}-4 \hat{k}}{5}$
D $\frac{3 \hat{j}-4 \hat{k}}{5}$

\#1613140

Topic: Resistance and Resistivity
Dimension of resistance R in terms of $u_{0} \& \varepsilon_{0}$ are

A $\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}$
B $\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}$

C $\frac{\varepsilon_{0}}{\mu_{0}}$
D $\frac{\mu_{0}}{\varepsilon_{0}}$
Solution
$\left[\mu_{0}\right]=\left[M^{1} L^{2} T^{-2} A^{-2}\right]$
$[R]=\left[M L^{2} T^{-3} A^{-2}\right]$
$[R]=\left[\varepsilon_{0}\right]^{a}\left[\mu_{0}\right]^{b}$
$\left[M L^{2} T^{-3} A^{-2}\right]=\left[M^{-a} L^{-3 a} T^{4 a} A^{2 a} M^{b} L^{2 b} T^{-2 b} A^{-2 b}\right]$
$2 a-2 b=-2$
$a-b=-1 \ldots .$. (1)
$4 a-2 b=-3 \ldots . . .(2)$
$2 a-2 b=-2 \ldots \ldots . .(3)$
$2 a=-1$
$a=-\frac{1}{2}, b=\frac{1}{2}$
$R \rightarrow[R]=\left[\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}\right]$

\#1613143

Topic: Interference
In YDSE when slab of thickness t and refractive index μ is placed in front of one slit then central maxima shifts by one fringe width. Find out t in terms of λ and μ

A $\frac{\lambda}{(2 \mu-1)}$

B $\frac{2 \lambda}{(2 \mu-1)}$
C $\frac{\lambda}{(\mu-1)}$
D $\frac{2 \lambda}{(2 \mu+1)}$
Solution
when a film of thickness t and refractive index μ is introduced in the path of one of the source of light ,then fringe shift occur as optical path difference changes
$\Delta y=(\mu-1) \frac{t D}{d}$
And, $\beta=\frac{\lambda D}{d}$
So, $t=\frac{\lambda}{(\mu-1)}$
\#1613153
Topic: Waves on a String

A wave is propagating in positive x - direction. A time $t=0$ its snapshot is taken as shown .If the wave equation is $y=A \sin (\omega t-k x+\phi)$, then ϕ is

A $\quad \phi=0$
B $\quad \phi=\pi$
C $\quad \phi=\frac{\pi}{2}$
D $\quad \phi=3 \pi / 2$

Solution
At $t=0$, the phase of particle at $x=0$ is 0
$\therefore \phi=0$
Thus the graph will be in the straight line passing through the origin.

\#1613157

Topic: Resistance and Resistivity

If the power dissipated in the circuits is $4 W$ then the value of R is :

A 4Ω
B 8Ω
C 16Ω

Solution

As $P=\frac{V^{2}}{R}$,
futher solving it we get,
$R e g=\frac{V^{2}}{P}=\frac{16^{2}}{4}=64 \Omega$
$2 R+R+4 R+R=64$
$8 R=64$
$R=8 \Omega$

\#1613164

Topic: Basics of Projectile Motion
Equation of trajectory of ground to ground projectile is $y=2 x-9 x^{2}$.Then the angle of projection with horizontal and speed of projection is: $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

A $\tan ^{-1}(2), \frac{5}{3} m / s$

B
$\tan ^{-1}(3), \frac{5}{3} m / s$
C $\tan ^{-1}(2), \frac{2}{3} m / s$
D $\tan ^{-1}(3), \frac{2}{3} m / s$

Solution

$y=2 x-9 x^{2}$ \qquad
$y=x \tan \theta-\frac{1}{2} \frac{g x^{2}}{u^{2} \cos ^{2} \theta}$ \qquad
comparing these two equations we get,
$\tan \theta=2$
$\frac{g}{2 u^{2} \cos ^{2} \theta}=9$
$\frac{10(1+4)}{2 u^{2}}=9 \Rightarrow u^{2}=\frac{10 \times 5}{2 \times 9} \Rightarrow u=\frac{5}{3} \mathrm{~m} / \mathrm{s}$
\#1613172
Topic: Dielectrics in capacitors

Two parallel plate capacitors are filled with dielectrics and connected separately across same potential difference as shown in figure.their plate area is A and separation between plates is ' d '.then the ration of energy stored is:

A $\frac{9 K_{1} K_{2} K_{3}}{\left(K_{1} K_{2}+K_{2} K_{3}+K_{3} K_{1}\right)\left(K_{1}+K_{2}+K_{3}\right)}$
B $\frac{5 K_{1} K_{2} K_{3}}{\left(K_{1} K_{2}+K_{2} K_{3}+K_{3} K_{1}\right)\left(K_{1}+K_{2}+K_{3}\right.}$
c $\frac{6 K_{1} K_{2} K_{3}}{\left(K_{1} K_{2}+K_{2}+K_{3}+K_{3}+K_{1}\right)\left(K_{1}+K_{2}+K_{3}\right)}$
D $\frac{3 K_{1} K_{2} K_{3}}{\left(K_{1} K_{2}+K_{2} K_{3}+K_{3} K_{1}\right)\left(K_{1}+K_{2}+K_{3}\right)}$

Solution

$\frac{1}{C_{1}}=\frac{\frac{d}{3}}{K_{1} \varepsilon_{0} A}+\frac{\frac{d}{3}}{K_{2} \varepsilon_{0} A}+\frac{\frac{d}{2}}{K_{3} \varepsilon_{0} A} s$
$C_{1}=\frac{3 K_{1} K_{2} K_{3} \varepsilon_{0} A}{d\left(K_{1} K_{2}+K_{2} K_{3}+K_{3} K_{1}\right.}$
$C_{2}=\frac{\left(K_{1}+K_{2}+K_{3}\right) \varepsilon_{0} A}{3 d}$
$\frac{E_{1}}{E_{2}}=\frac{\frac{1}{2} C_{1} V^{2}}{C_{2} V^{2}}=\frac{9 K_{1} K_{2} K_{3}}{\left(K_{1} K_{2}+K_{2} K_{3}+K_{3} K_{1}\right)\left(K_{1}+K_{2}+K_{2}\right)}$
\#1613179
Topic: Torque

A uniform rod of length / is rotating with constant angular speed ω as shown in figure. Choose the graph which correctly shows the variation of T with X

B

c

D

Solution

By using the concept of Rotational motion on body,
tension can be given as:
$T=\frac{m}{l}(I-x) \omega^{2}\left(x+\frac{l-x}{2}\right)$
$T=\frac{m}{l}\left(\omega^{2}\right) \frac{(1-x)(1+x)}{2}$
$T=\frac{m \omega^{2}}{2 I}\left(I^{2}-x^{2}\right)$

\#1613184
Topic: Elastic Collisions in One-Dimension

Two men A and B of mass 50 kg and 20 kg respectively are at rest on a frictionless surface as shown in figure.lf A pushes B with relative velocity 0.7 m/s then find velocity of A just after the push

A $0.2 \mathrm{~m} / \mathrm{s}$

B $1 \mathrm{~m} / \mathrm{s}$

C $5 \mathrm{~m} / \mathrm{s}$

D $4 \mathrm{~m} / \mathrm{s}$

Solution

$P_{i}=0$
$P_{f}=20(0.7-V)-50(V)$
$20(0.7-v)=50 v$
$14-20 v=50 v$
$14=70 \mathrm{~V}$
$V=\frac{14}{70}=0.2 \mathrm{~m} / \mathrm{s}$

\#1613192

Topic: Basics of AC

Graph between output current $\left(I_{C}\right)$ and input current $\left(I_{B}\right)$ for common emitter of $n-p-n$ transistor is given in the figure.if input resistance is $100 k \Omega$. Find the out voltage gain an power gain are

A $\quad 2 \times 10^{4}, 4 \times 10^{5}$
B $\quad 3 \times 10^{4}, 9 \times 10^{6}$
C $\quad 6 \times 10^{4}, 8 \times 10^{6}$

D $\quad 8 \times 10^{4}, 2 \times 10^{6}$

Solution

Current gain $(\beta)=\frac{\Delta I_{c}}{\Delta I_{B}}=\left(\frac{200-100}{10-5}\right)=\frac{100}{5}=20$
Voltage gain $\left(A_{\nu}\right)=\beta \times \frac{R_{\text {out }}}{R_{\text {in }}}=20 \times \frac{100 \times 10^{3}}{100}=20 \times 10^{3}$
Power gain $=A_{v} \times \beta=20 \times 10^{3} \times 20=4 \times 10^{5}$

\#1613196

Topic: Magnetic field
A point charge is moving in a circular path of radius 10 cm with angular frequency $40 \pi \mathrm{rad} / \mathrm{s}$. The magnetic field produced by it at the center is $3.8 \times 10^{-10} \mathrm{~T}$. T then the value of charge is :

A $3 \mu c$
B $4 \mu c$
C $\quad 1 \mu c$
D $\quad 9 \mu c$
Solution
$B=\frac{\mu_{0}}{4 \pi} \frac{q v}{r^{2}} \sin \theta$
$B=10-7 \frac{q \omega r}{r^{2}}$
$=3.8 \times 10^{-10}=10^{-7} . q \times 40 P$
$q=3 \mu c$

\#1613205

Topic: Stopping Potential and Einstein's Photoelectric Equation

Graph between stopping potential and frequency of photon is given in figure.
Find out work function metal

A 0.82
B 0.92
$\begin{array}{ll}C & 0.72\end{array}$
D $\quad 0.62$
Solution
$v_{t h}=2 \times 10^{14} \mathrm{~Hz}$
$W=\frac{h v_{t h}}{e}($ inev $)$
$W=\frac{6.63 \times 10^{-34} \times 2 \times 10^{14}}{1.6 \times 10^{19}}=0.82 \mathrm{eV}$
\#1613210
Topic: Logic Gates

Logic gate for inpute A an B is given in figure
Which table is correct for given gates system:

A

A	B	Y
$\mathbf{0}$	0	0
1	0	1
0	1	0
1	1	1

B

\mathbf{A}	\mathbf{B}	\mathbf{Y}
0	0	0
$\mathbf{1}$	0	1
0	1	1
1	1	0

C \quad| A | B | \mathbf{Y} |
| :--- | :--- | :--- |
| $\mathbf{0}$ | $\mathbf{0}$ | 1 |
| $\mathbf{1}$ | $\mathbf{0}$ | 0 |
| | 0 | 1 |
| | 1 | |
| 1 | 1 | 0 |

D

A	\mathbf{B}	\mathbf{Y}
0	0	1
$\mathbf{1}$	0	1
0	1	0
1	1	0

Solution

Output of OR gate $C=A+B$
$y=(A+B) \cdot A$

\#1613211

Topic: Diffraction
If aperture diameter of the lens of a telescope is $1.25 m$ and wavelength of light used is 5000_{A}° its resolving power is

A 2.05×10^{6}
B $\quad 2.5 \times 10^{5}$

C $\quad 4.1 \times 10^{5}$

D $\quad 4.1 \times 10^{6}$

Solution

resolving power $=\frac{d}{1.22 \lambda}=\frac{1.25 \times 10^{10}}{1.22 \times 500}$

$$
\Rightarrow 2.049 \times 10^{6}
$$

A square wire of resistance 1.3Ω and side 1 cm its moving in uniform magnetic field $B=1 T$ with speed $1 \mathrm{~cm} / \mathrm{sec}$ as shown in figure the the currnet in loops is:

A $\quad 41 \mu A$

B $\quad 54 \mu A$
C $61 \mu A$

D $\quad 31 \mu A$

Solution
$E=B V I=1 \times 10^{-2 \times 10^{-2}=10^{-4} \mathrm{Volt}}$
$R_{\text {eq }}=\frac{4}{3}+1.3=1.33+1.3=1.63 \Omega$
$I=\frac{10^{-4}}{1.63}=61 \mu \mathrm{~A}$

