## \#1612995

Topic: Organ Pipes
In resonance tube experiment with a tuning fork of frequency 480 Hz the consecutive resonance lengths are 30 cm and 70 cm then determine speed of sound is

A $\quad 200 \mathrm{~m} / \mathrm{s}$
B $\quad 256 \mathrm{~m} / \mathrm{s}$
C $\quad 384 \mathrm{~m} / \mathrm{s}$
D $\quad 240 \mathrm{~m} / \mathrm{s}$

## Solution

$\frac{\lambda}{2}=40 \mathrm{~cm} \Rightarrow \lambda=0.8 \mathrm{~m}$
$f=480 \mathrm{~Hz} \Rightarrow V_{\text {sound }}=f \lambda=480 \times 0.8=384 \mathrm{~m} / \mathrm{s}$

## \#1613084

Topic: Magnetic field


A conducting wire carries 5 A current. Its lengths is 6 cm . Then the magnetic field intensity at a distance of 4 cm from the wire on the perpendicular bisector of the wire is

A $\quad 1.5 \times 10^{-5} T$
B $\quad 1.3 \times 10^{-5} T$

C $3 \times 10^{-5} T$

D $\quad 0.75 \times 10^{-5} T$

## Solution

$B=\frac{\mu_{0} i}{4 \pi r}\left[\sin \theta_{1}+\sin \theta_{2}\right]$
$=10^{-7} \times \frac{5}{4 \times 10^{-2}}\left[\frac{3}{5}+\frac{3}{5}\right]$
$B=1.5 \times 10^{-5} T$.

## \#1613087

Topic: Springs
A spring of length ' $l^{\prime}$ has spring constant ' $k^{\prime}$ is cut into two parts of length $l_{1}$ and $l_{2}$. If their respective spring constants are $k_{1}$ and $k_{2}$, then $\frac{k_{1}}{k_{2}}$ is
A $\frac{l_{2}}{l_{1}}$
B $\quad \frac{2 l_{2}}{l_{1}}$
C $\quad \frac{l_{1}}{l_{2}}$
D None

## Solution

$k_{1} l_{1}=k_{2} l_{2}=k l$
$\frac{k_{1}}{k_{2}}=\frac{l_{2}}{l_{1}}$

## \#1613089

Topic: Isobaric, Isochoric, Isothermal Processes
In isobaric process of ideal gas $(f=5)$ work done by gas is equal to 10 J . Then heat given to gas during process is

A $25 J$

B $\quad 15 \mathrm{~J}$

C $\quad 45 \mathrm{~J}$
D 35 J
Solution
$\triangle Q=\left(\frac{f}{2}+1\right) n R \triangle T=\frac{7}{2} \times 10=35 J$

## \#1613093

Topic: Basics of Projectile Motion
Two particles are projected obliquely from ground with same speed such that their range ' $R^{\prime}$ are same but they attain different maximum heights $h_{1}$ and $h_{2}$ then relation between $R, h_{1}$ and $h_{2}$ is

A $\quad R^{2}=16 h_{1} h_{2}$
B $\quad R^{2}=8 h_{1} h_{2}$
C $\quad R^{2}=4 h_{1} h_{2}$
D $\quad R^{2}=h_{1} h_{2}$
Solution
$R$ is same for $\theta$ and $(90-\theta)$ angle of projection
$R=\frac{2 u^{2} \sin \theta \cos \theta}{g}, h_{1}=\frac{u^{2} \sin ^{2} \theta}{2 g} ; h_{2}=\frac{u^{2} \cos ^{2} \theta}{2 g}$
$R^{2}=\frac{4 u^{2} \sin ^{2} \theta}{g} \frac{u^{2} \cos ^{2} \theta}{g}$
$R^{2}=4.2 h_{1} h_{2}$
$R^{2}=16 h_{1} h_{2}$

## \#1613098

Topic: Liquid Drops and Bubbles
A drop of liquid is broken down into 27 identical liquid drops. If the terminal velocity of original liquid drop is $V_{T}$, then find the terminal velocity of the new liquid drop thus formed.

A $\frac{V_{T}}{3}$
B $\frac{V_{T}}{9}$
C $\frac{V_{T}}{27}$
D $\frac{9 V_{T}}{9}$

## Solution

$M=\rho \times \frac{4}{3} \pi R^{3}$
$\frac{M}{27}=\rho \times \frac{4}{3} \pi r^{3}$
$r \rightarrow \frac{R}{3}$
$V_{T} \propto(\text { Radius })^{2}$
$\frac{V_{T}}{V_{\text {new }}}=\frac{R^{2}}{(R / 3)^{2}}=9 V_{\text {new }}=\frac{V_{T}}{9}$.

## \#1613101

Topic: Energy and Power
1 kg of water is at $20^{\circ} \mathrm{C}$. A resistor of $20 \Omega$ is connected across 200 V battery and the heat dissipated is supplied to water then the time taken by the water to is:
(Specific heat $=4200 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$; Latent heat $\left.=2260 \mathrm{Kj} / \mathrm{Kg}\right)$.

A 44 minutes
B 33 minutes

## Solution

$m S \triangle T+m L=\frac{V^{2}}{R} t$
$1 \times 4200 \times 80+1 \times 2.26 \times 10^{6}=\frac{(200)^{2}}{20} t$
$t=21.6 m \sim 22$ minutes

## \#1613103

Topic: Amplitude Modulation
In amplitude modulation carrier wave is $C=4 \sin 2000 t$ and message wave $M=2 \sin 200 t$ Find out modulation index.

A 9
B 3
C $\quad \frac{1}{9}$
D $\frac{1}{3}$

## Solution

$m=\left(\frac{V_{\max }-V_{\min }}{V_{\max }+V_{\min }}\right)=\frac{4-2}{4+2}=\frac{2}{6}=\frac{1}{3}$

## \#1613106

Topic: Engines and Cycles
A Carnot engine has efficiency $\frac{1}{6}$. If temperature of sink is decreased by $62^{\circ} \mathrm{C}$ then its efficiency becomes $\frac{1}{3}$ then the temperature of source and sink.

A $\quad T_{H}=98^{\circ}, T_{C}=36^{\circ} C$
B $\quad T_{H}=99^{\circ}, T_{C}=37^{\circ} \mathrm{C}$
C $T_{H}=100^{\circ}, T_{C}=38^{\circ} \mathrm{C}$
D $\quad T_{H}=102^{\circ}, T_{C}=40^{\circ} \mathrm{C}$

## Solution

$\frac{1}{6}=1-\frac{T_{C}}{T_{H}}$
$\frac{T_{C}}{T_{H}}=1-\frac{T_{C}-(62)}{T_{H}}=1-\frac{T_{C}}{T_{H}}+\frac{(62)}{T_{H}}$
$\frac{1}{3}=\frac{1}{6}+\frac{62}{T_{H}}$
$\frac{62}{T_{H}}=\frac{1}{6} T_{H}=372 \mathrm{~K}$
$\frac{1}{6}=1-\frac{T_{C}}{372}$
$\frac{T_{C}}{372}=\frac{5}{6}$
$T_{C}=\frac{5 \times 372}{6}=310 K$.

## \#1613107

Topic: Moving Coil Galvanometer
If a galvanometer has full scale deflection current $I_{G}$ and resistance $G$. A shunt resistance $R_{A}$ is used to convert it into an ammeter of range $I_{0}$ and a resistance $R_{V}$ is connected in series to convert it into a voltmeter of range $V_{0}$ such that $V_{0}=I_{0} G$ then $R_{A} R_{V}$ and $\frac{R_{A}}{R_{V}}$ respectively are

A $G^{2}$ and $\frac{I_{G}^{2}}{\left(I_{0}-I_{G}\right)^{2}}$
B $\quad G^{2}$ and $\frac{I_{0}^{2}}{\left(I_{0}-I_{G}\right)^{2}}$
C $\quad G^{2}$ and $\frac{I_{G}}{\left(I_{0}-I_{G}\right)^{2}}$
D $\quad G^{2}$ and $\frac{I_{G}^{2}}{\left(I_{0}+I_{G}\right)^{2}}$

## Solution

$\left(I_{0}-I_{G}\right) R_{A}=I_{G} G$ and $V_{0}=I_{G}\left(G+R_{V}\right)$
$I_{0}=\frac{I_{G}\left(G+R_{A}\right)}{R_{A}} V_{0}=I_{G}\left(G+R_{V}\right)$
$V_{0}=I_{G} G \Rightarrow I_{G}\left(G+R_{V}\right)=I_{G} \frac{\left(G+R_{A}\right) G}{R_{A}}$
$R_{A} G+R_{V} R_{A}=G^{2}+R_{A} G$
$R_{V} R_{A}=G^{2}$
$R_{A}=\frac{I_{G} G}{I_{0}-I_{G}} ; R_{V}=\frac{\left(I_{0}-I_{G}\right) G}{I_{G}}$
$\frac{R_{A}}{R_{V}}=\frac{I_{G}^{2}}{\left(I_{0}-I_{G}\right)^{2}}$.

## \#1613127

Topic: Dual Nature
The De-Broglie wave length of electron in second exited state of hydrogen atom is

A $5 A^{\circ}$
B $\quad 10 A^{\circ}$
C $\quad 100 A^{\circ}$
D $\quad 6.6 A^{\circ}$
Solution
$\lambda=\sqrt{\frac{150}{1.5}}=10 \stackrel{\circ}{\mathrm{~A}}$.

## \#1613134

Topic: Beats
An observer moves on the same line on which two sources of sound of frequency 660 Hz are present. The observer observes beat frequency of 10 Hz . If speed of sound is $330 \mathrm{~m} / \mathrm{s}$ then speed of the observer is

A $\quad 5 \mathrm{~m} / \mathrm{s}$
B $\quad 3 \mathrm{~m} / \mathrm{s}$


D $\quad 4 \mathrm{~m} / \mathrm{s}$

## Solution

$f_{1}=$ apparent frequency received from $S_{1}=\frac{c-u}{c} f_{0}$
$f_{2}=$ apparent frequency received from $S_{2}=\frac{c+u}{c} f_{0}$ beat frequency $=f_{2}-f_{1}=\left[\frac{c+u}{c}-\frac{c-u}{c}\right] f_{0}$
$=\frac{2 u}{c} f_{0}=10$
$=\frac{2 u \times 660}{330}=10$
$=u=2.5 \mathrm{~m} / \mathrm{s}$.


## \#1613139

Topic: Speed and Velocity
Velocity of a particle as function of displacement $x$ is given by $v=b x^{1 / 2}$. Then the displacement as function of time is

A $b t$
$\mathrm{B} \quad \frac{b^{2} t^{2}}{4}$
C $\frac{b t}{4}$

D $\frac{b^{2} t^{3}}{4}$
Solution
$v=b x^{1 / 2}$
$\frac{d x}{d t}=b x^{1 / 2}$
$\int_{0}^{x} \frac{d x}{x^{1 / 2}}=\int_{0}^{t} b d t$
$2 \sqrt{x}=b t$
$x=\frac{b^{2} t^{2}}{4}$.
\#1613141
Topic: Centre of mass


Three particles $A(50 \mathrm{~g}), B(100 \mathrm{~g})$ and $C(150 \mathrm{~g})$ are placed at vertices of an equilateral triangle as shown in figure. Then the coordinates of centre of mass of system is
$\mathrm{A} \quad\left(\frac{7}{12}, \frac{\sqrt{3}}{4}\right) \mathrm{cm}$
B $\left(\frac{\sqrt{3}}{4}, \frac{7}{12}\right) \mathrm{cm}$
C $\left(\frac{7}{16}, \frac{\sqrt{3}}{8}\right) \mathrm{cm}$
D $\left(\frac{\sqrt{3}}{8}, \frac{7}{16}\right) \mathrm{cm}$

## Solution

$x_{c m}=\frac{50 \times 0+100 \times 1+150 \times 1 / 2}{50+100+50}=\frac{175}{300}=\frac{7}{12} \mathrm{~cm}$
$y_{c m}=\frac{50 \times 0+100 \times 0+150 \sqrt{3} / 2}{300}=\frac{\sqrt{3}}{4} \mathrm{~cm}$.

## \#1613145

Topic: Angular velocity


A ring a radius $r$ is rotating about a vertical axis along its diameter with constant angular velocity $\omega$. A read of mass $m$ remains at rest w.r.t. ring at the position shown in figure. Then $w^{2}$ is

A $\frac{g}{\sqrt{3 r}}$
B $\frac{2 g}{\sqrt{3} r}$
C $\frac{\sqrt{3} g}{r}$
D $\quad \frac{g}{r}$

## Solution

$\theta=30^{\circ}$
$N \sin 30^{\circ}=m \omega^{2} r$
$N \cos 30^{\circ}=m g$
$\tan 30^{\circ}=\frac{\omega^{2} r}{g}, \omega^{2}=\frac{g}{\sqrt{3} r}$

\#1613149
Topic: LCR circuits
L

## moon-MM



The switch shown in figure is closed at $t=0$ find the charge through battery till time $t=\frac{L}{R}$
A $\frac{L_{\epsilon}}{e R^{2}}$
B $\frac{L_{\epsilon}}{2 e R^{2}}$
C $\frac{2 L_{\epsilon}}{e R^{2}}$
D None

## Solution

$i=\frac{\epsilon}{R}\left(1-e^{-t / \tau}\right)$ where $\tau=L / R$
$\frac{d q}{d t}=\frac{\epsilon}{R}\left(1-e^{-t / \tau}\right)$
$\int_{0}^{q} d q=\int_{0}^{\tau} \frac{\epsilon}{R}\left(1-e^{-t / \tau}\right) d t$
$q=\frac{\epsilon}{R}\left[t-\frac{e^{-t / \tau}}{-1 / \tau}\right]_{0}^{\tau}$
$q=\frac{\epsilon}{R}\left[\tau+\frac{\tau}{e}-\tau\right]$
$q=\frac{\epsilon}{R} \frac{\tau}{e}=\frac{L \epsilon}{e R^{2}}$.
\#1613154
Topic: Photons and Photoelectric Effect
The ratio of wavelengths of photons emitted when hydrogen atom de-excites from third excited state to second excited state an then de-excites form seconds excited state to first excited state is

A $\frac{7}{20}$
B $\frac{20}{7}$
C 5

D $\quad 20$

## Solution

$\frac{1}{\lambda_{1}}=R\left(\frac{1}{3^{2}}-\frac{1}{4^{2}}\right)=\frac{7 R}{144}$.
$\frac{1}{\lambda_{2}}=R\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=\frac{5 R}{136}$.
(2)/(1) $\frac{\lambda_{1}}{\lambda_{2}}=\frac{5 R}{36} \times \frac{144}{7 R}=\frac{20}{7}$

## \#1613158

Topic: Acceleration due to Gravity
Two planets of radii $R_{1}$ and $R_{2}$ have masses $M_{1}$ and $M_{2}$ such that $\frac{M_{1}}{M_{2}}=\frac{1}{9}$. The weight of an object on these planets is $w_{1}$ and $w_{2}$ such that $\frac{w_{1}}{w_{2}}=\frac{4}{9}$. The ratio $R_{1} / R_{2}$.

A 2
B $\frac{1}{2}$
C 4
D $\frac{1}{4}$

## Solution

$w_{1}=\frac{G M_{1} m}{R_{1}^{2}} ; w_{2}=\frac{G M_{2} m}{R_{2}^{2}}$
$\frac{w_{1}}{w_{2}}=\frac{M_{1}}{M_{2}}\left(\frac{R_{2}}{R_{1}}\right)^{2}$
$\frac{4}{9}=\frac{1}{9}\left(\frac{R_{2}}{R_{1}}\right)^{2} \Rightarrow \frac{R_{1}}{R_{2}}=\frac{1}{2}$

## \#1613160

Topic: Motion of Centre of Mass
A solid sphere of radius $R$ has total charge $2 Q$ and volume charge density $\rho=k r$ where $r$ is distance from centre. Now charges $Q$ and $-Q$ are placed diametrically opposite distance $2 a$ where $a$ is distance form centre of sphere such that net force on charge $Q$ is zero then relation been $a$ is

A $\quad a=R / 2$
B $\quad a=R$

C $\quad a=2 R$

D $\quad a=3 R / 4$

## Solution

$\int_{0}^{R} k r 4 \pi r^{2} d r=2 Q$
$k \pi R^{4}=2 Q \ldots(1)$
$\frac{K Q^{2}}{4 a^{2}}=Q \int_{0}^{a} \frac{K k r 4 \pi r^{2} d r}{r^{2}}$
$\frac{K Q^{2}}{4 a^{2}}=Q K k 4 \pi \frac{a^{2}}{2} \Rightarrow \frac{K Q^{2}}{4 a^{2}}=Q . K \cdot \frac{2 Q}{\pi R^{4}} 4 \pi \frac{a^{2}}{2}$
$\frac{1}{4 a^{2}}=\frac{4 a^{2}}{R^{2}} \Rightarrow R^{4}=16 a^{4}$
$R=2 a \Rightarrow a=\frac{R}{2}$.

\#1613167
Topic: Volume Expansion
A cylinder of length $l$ and radius $r$ is heated to temperature $T$. A longitudinal compressive force $F$ is applied on cylinder to keep its length same. Find coefficient of volume expansion.

A $\frac{F}{Y T \pi r^{2}}$
B $\frac{3 F}{Y T \pi r^{2}}$
C $\frac{2 F}{Y T \pi r^{2}}$
D None of these
Solution
$\sigma=\frac{F}{A}$
$Y \propto T=\frac{F}{\pi r^{2}}$
$\alpha={\frac{F}{Y r^{2}}}_{Y \pi \pi r^{2}}^{3 F}$
$\gamma=3 \alpha=\frac{3 F}{Y T \pi r^{2}}$.

## \#1613174

Topic: Reflection at Plane Surface


Find condition for $T I R$ at surface 2 .
A $\theta<\sin ^{-1} \sqrt{\left(\frac{\mu_{2}}{\mu_{1}}\right)^{2}-1}$
B $\quad \theta>\sin ^{-1} \sqrt{\left(\frac{\mu_{2}}{\mu_{1}}\right)-1}$
C $\quad \theta<\sin ^{-1} \frac{\mu_{2}}{\mu_{1}}$
D $\quad \theta>\sin ^{-1} \frac{\mu_{2}}{\mu_{1}}$

## Solution

$\mu_{1} \sin \theta=\mu_{2} \sin r_{1}$
$90-r_{1}>C$
$\sin \left(90-r_{1}\right)>\sin c$
$\cos r_{1}>\sin c$
$\cos r_{1}>\frac{\mu_{1}}{\mu_{2}}$
$\sqrt{1-\left(\frac{\mu_{1} \sin \theta}{\mu_{2}}\right)^{2}}>\frac{\mu_{1}}{\mu_{2}}$
$1-\frac{\mu_{1}^{2}}{\mu_{2}^{2}} \sin ^{2} \theta>\frac{\mu_{1}^{2}}{\mu_{2}^{2}}$
$\frac{\mu_{2}^{2}-\mu_{1}^{2}}{\mu_{1}^{2}}>\sin ^{2} \theta$
$\theta<\sin ^{-1} \sqrt{\left(\frac{\mu_{2}}{\mu_{1}}\right)^{2}-1}$

\#1613181
Topic: Zener Diode


For the given circuit shown in figure, the potential of the battery is varied from 10 V to 16 V . If by zener diode breakdown voltage is 6 V , find maximum current through zener diode.

A $\quad 1.5 \mathrm{~mA}$
B 3.5 mA
C 5 mA

D $\quad 6.5 \mathrm{~mA}$

Solution
$i_{i}=\frac{6}{4}=1.5 \mathrm{~mA}$
Maximum current will be obtained for battery voltage 16 V
$i=\frac{16-6}{2}=5 m A i_{z}(\max )=5-1.5=3.5 \mathrm{~mA}$

\#1613187
Topic: Polarisation


Unpolarised light beam of intensity $I_{0}$ is incident on polaroid $P_{1}$. The three polaroids are arranged in such a way that transmission axis of $P_{1}$ and $P_{3}$ are perpendicular to each other. Angle between the transmission axis of $P_{2}$ and $P_{3}$ is $60^{\circ}$. The intensity of the beam coming out from $P_{3}$ will be

A $\frac{I_{0}}{2}$
B $\frac{3 I_{0}}{8}$
C $\quad 3 I_{0}$
D $\frac{3 I_{0}}{64}$
Solution
$I_{2}=I_{1} \cos ^{2} 30^{\circ}=\frac{I_{0}}{2} \times \frac{3}{4}=\frac{3 I_{0}}{8}$
$\therefore I_{3}=I_{2} \cos ^{2} 60^{\circ}=\frac{3 I_{0}}{8} \times \frac{1}{4}=\frac{3 I_{0}}{32}$


## \#1613190

Topic: Nuclear Structure
Two radioactive samples 1 and 2 have equal number of nuclei initially. They have half-lives of 10 seconds and 20 seconds. The ratio of number of nuclei of 1 and $t=60$ seconds is

A $8: 1$
B $\quad 1: 8$
C $\quad 3: 8$
D $1: 9$
Solution

$$
N_{1}=N_{0}\left(\frac{1}{2}\right)^{6} N_{2}=N_{0}\left(\frac{1}{2}\right)^{3} \frac{N_{1}}{N_{2}}=\frac{1}{8}
$$

## \#1613194

Topic: Acceleration


Two blocks $A$ and $B$ are being accelerated by forces shown in figure with acceleration $\vec{a}_{1}$ and $\vec{a}_{2}$ respectively. The value of $\left|\vec{a}_{1}-\vec{a}_{2}\right|$.

A $\frac{4}{5}$
B
C $\frac{5}{4}$
D $\frac{5}{8}$

## Solution

$N_{1}=50+10=60 N$
$F_{\text {Lim }}=0.2 \times 60=12 \mathrm{~N}$
$F_{\text {applied }}>12 N$
$\therefore f_{1}=12 N$
$\therefore a_{1}=\frac{17.32-12}{5}$
$N_{2}=50-10=40 \mathrm{~N}$
$F_{\text {Lim }}=0.2 \times 40=8 N$
$F_{\text {applied }}>8 N$
$\therefore f_{1}=8 N$
$a_{2}=\frac{17.32-8}{5}$
$=\frac{5.32}{5}$
$\therefore a_{1}-a_{2}=-\frac{4}{5}$
$\therefore\left|a_{1}-a_{2}\right|=\frac{4}{5}$.


50 N

